

 - USSR Academy of Sciences Siberian Division -

 - Computing Center -

::::: ::::
::::: ::::
 ::: :::
 ::: ::
 ::: ::
 ::: : : :: ::: ::: ::: ::: ::: ::
 ::: :: :::: ::: ::: ::: ::: ::: ::: ::: ::::
 ::: ::: ::: :: :: :: :: :: :: ::
::
 ::: ::: :: :: :: :: :: :: ::
::
::::: :::: :: ::: ::: :: :: ::: ::: ::
::
::::: :::: :: ::: :: :: ::: :::

 The Architecture of KRONOS Family Processors

 Novosibirsk - 1988

02-Dec-1988 2 (c) KRONOS

 Copyright (c) 1988 by KRONOS Group. All rights reserved.
No part of this document may be reproduced or transmitted in
any form or by any means without permission.

 We hope information offered in this
 guide is valid. Nevertheless we shall be
 very glad if user reads this guide
 critically and responds us about all
 questions, misses, disadvantages and
 wishes. Authors acknowledge with thanks
 and pleasure everybody who participated in
 guide producing.

 Our address is:

 Computing Center, prospect
 Lavrentieva, 6, Novosibirsk, 630090, USSR.
 Phone: 35-50-67.

Version from 16.10.88

02-Dec-1988 3 (c) KRONOS

 Contents

Introduction . 4
Virtual Modula-2 machine 6
M-code interpreter . 12
Instruction set manual 25
Processors architecture illustrations 73
1. Statements . 74
 1.1. Assignment . 74
 1.2. Access to global variables 74
 1.3. Access to external variables 75
 1.4. IF statement .75
 1.5. LOOP statement 75
 1.6. REPEAT statement 76
 1.7. FOR statement 76
2. Procedures . 77
 2.1. Procedure declaration and call 77
 2.2. Operation over procedure local data 78
 2.3. Nested procedures 79
 2.4. External procedure call 79
 2.5. Multivalues location 81
 2.6. Return from module initial part 81
 2.7. Operation over procedure values 82
 2.8. Parameter passing 83
 2.9. Function call over nonempty stack 85
3. Expressions . 87
 3.1. Word-arrays indexation 87
 3.2. Byte-arrays indexation 87
 3.3. Byte-arrays indexation with range check 88
 3.4. Range check . 89
 3.5. Operation over BITSET type object 89
 3.6. ANDJP and ORJP instructions 89

ARCHITECTURE INTRODUCTION

02-Dec-1988 4 (c) KRONOS

 INTRODUCTION

 The architecture of KRONOS family processors is oriented
to the support of the high-level languages (C, Modula-2,
Pascal, Occam) and thereby gives possibility to design modern
conceptions for computer application. 32-bit machine word
allows one to use processors of the family for scientific
research. The wide address space (2 billion words) gives
possibility to use virtual memory for designing
object-oriented models and artificial intelligence systems.
The hardware support of the interruption handler (for the
events and processes synchronization) and compact code give us
surance that the processors of KRONOS family may be
successfully used in the real-time systems.
 Any processor of the family may be used in a single
computer or in a multiprocessing system as well.

 KRONOS processors

 1. KRONOS-2 is the first implementation of preceding
concepts. It is embedded in "Electronica-60" computer and is
compatible with its peripheral devices and memory. The
processor is designed on chips of 1802, 1804, 155 and 531
series. In contrast to "Electronica-60", the processor has
32-bit word, twice performance, and address space which
reaches 4Mbyte.
 2. KRONOS-2.5 is the development of KRONOS-2 processor
distinguished by higher performance: 1 million instructions
over stack per second. Interface with the external devices is
performed via MULTIBUS 1.
 3. In KRONOS-2.6 the possibility of using direct
communication channels with high capacity for integration
several processors is expected, thus providing usage of
processors 2.6 extended by emulators of arithmetic operations
as the basis of the system MARS-T. High capacity is provided
by transputer organization of the system and servers and
functional units included. Processors 2.6 may also be used in
workstations of MARS system.
 Now the single-chip variant of KRONOS processor is
designed. The perspective of this work are provided by
simplicity of instruction set hardware design and the
necessity in personal computers with high power, supporting
high-level language programming. Modern element base provides
the creation of systems with performance about 5 million
instructions per second for each transputer element.

ARCHITECTURE INTRODUCTION

02-Dec-1988 5 (c) KRONOS

 KRONOS-2.X processors family

 KRONOS-2.X processors family consists of processors
having been designed over different element bases with the
usage of different interface buses. All of them have M-code as
the instruction set and differ only by performance and
peripheral control methods.

 Engineering characteristics of KRONOS processors

--
Processor | Kronos 2.2 | Kronos 2.5 | Kronos 2.6
 | | |
Standard | Q-22 (c) DEC | (c) Intel | EuroCard E-2
 | | |
Number of cards | 1 | 2 | 2-8
 | | |
Bus | Q-bus 22 | Multibus-1 | local
 | | |
RAM size | 4 Mbyte | 2,5 Mbyte | 8 Gbyte
 | | |
Clock | | |
rate, mHz | 4 | 3 | 3
 | | |
Number of op. | | |
over the stack, | 0,6 | 1 | 1,5
m. per sec. | | |
--

 This guide gives the entire overview of processors of the
KRONOS family architecture. The first chapter introduces the
main notions of architecture. Chapter "M-code interpreter"
gives declaration in Modula-2 of the processor instruction set
followed by comments. The volume is ended by examples
illustrating Modula-2 compiler and processing.

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 6 (c) KRONOS

 VIRTUAL MODULA-2 MACHINE

 The Virtual Modula-2 Machine and its interpreters support
the process of program execution. This Chapter characterizes
M-code, defines semantics of its instructions illustrating
some of them.
 The main differencies of VM2M from traditional machines:
 1) evaluation of expressions on quick stack with small
fixed depth. Blasting of this stack (copying in memory) during
a procedure call;
 2) separation of code and data areas for each process
which provides reenterability for all programs and even for
their constituents (modules);
 3) refusal to use absolute addressing even in a code
segment. Usage of displacement tables of subprogram entries
simplifies their invocations;
 4) advanced kinds of addressing reflects notions of
modern programming languages. There is addressing for local,
global, external and intermediate objects;
 5) special instructions simplify implementation of loops,
calls, case statements and some other ones;
 6) a table of separately loaded modules provides
organizing dynamic loading-linking-execution of programs;
 7) there are multivalue operating instructions.

 Futher it is supposed that reader knows followed Modula-2
notions:
 PROGRAM
 MODULE
 IMPORT-EXPORT of OBJECTS
 GLOBAL VARIABLES
 PROCEDURE
 LOCAL PROCEDURE
 LOCAL VARIABLES

 Input/output essentially depend on implementation and are
not considered here.
 VM2M consists of processor, stack for the storage of
values and expressions evaluation (further it is designated as
A-stack), register-pointer (P-register), code segment and
data.
 VM2M Processor serves for data elaboration and
interpretation of M-code control instructions.
 A-stack is a quick stack of a small depth (whose elements
are 32-bit machine words) over which the traditional
instructions putting on (Push) and taking (with deleting) from
(Pop) the stack top are defined. Hardware supports control for
stack overflow/underflow with corresponding interruption
raising.
 VM2M Memory is considered as a linear sequence of 32-bit
words each related with 32-bit number - its address. Only the
whole word may be addressed (i.e. a machine word is the

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 7 (c) KRONOS

addressing unit).

 address: 0FFFFF address: 1 address: 0
 _______________ _______________________________
 | 3 | 2 | 1 | 0 | | 3 | 2 | 1 | 0 | 3 | 2 | 1 | 0 |
 --------------- -------------------------------

 The program which is currently being executed is said to
be a process.
 Such structures exist in memory during VM2M processing:
separately-compiled modules, procedure stacks (further
P-stack), process descriptors and table of pointers on global
domains of loaded modules (the so-called global Data Frame
Table - DFT).
 Process descriptor consists of 7 machine words which
contain pointers to the informational data structures related
with the process. These pointers determinate the process
context, i. e. the whole information needed for a current
process execution by virtual machine. The base address of the
current process descriptor lies in P-register of the
processor.
 In terms of Modula-2 a process descriptor is the record:

 TYPE Process_Descriptor = RECORD
 F, PC, G, H, S, L, M: WORD;
 END;

 Every descriptor field has a special purpose, which is
described below. Further descriptor fields will be called for
conveniency as processor registers (e.g. "G-register" instead
of "Process_Descriptor.G").
 Note. The existing implementation of VM2M (processors of
KRONOS family) in fact have specialized registers which
contain copies of corresponding fields of the current process
descriptor during the execution time. When process switching
takes place, register contents is copied in memory starting
from the address contained in P-register.
 Module which is loaded in memory and ready for execution
consists of code segment, global data area, constant area of
composite types, i.e. strings, arrays, records (string pool),
external module link area - local DFT (if module contains
object import).
 Code segment occupies contiguous area and has a complex
structure. Procedure table (up to 256 words) lies at the top.
It contains displacements in bytes between a segment base and
the origin of the corresponding procedure. Thus, the inner
procedure is precisely identified by its number in the module
procedure table. During the execution of the inner procedure,
F-register contains a pointer to the code segment base. PC
(Program Counter) contains offset in bytes between the code
segment base and byte which contains the next instruction.

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 8 (c) KRONOS

 Global data area of module occupies a contiguous area of
words. The single-word data are stored there immediately but
composite variables are represented with the help of pointers
in special areas of memory. G-register points to the global
data area base of a current module. Thus, access to module
global variables is organized as G-register indexation, i.e.
the global word with number 3 is situated in the cell with the
address [G]+3 ([REG] denotes contents of register "REG"). The
first two words of the global data area contain special
information: the lower word (its address equals 0) of the area
contains the pointer to the code segment base of the module
(copy of F-register) and the next word contains pointer to the
string pool base.
 String pool occupies a contiguous area and contains
literals of composite types (strings, arrays, records). The
first word (it offset equals 1) of the module global data area
points to the string pool base.
 External module link area (local DFT) occupies contiguous
area and may be represented as an array of words, whose
elements contain pointer to elements of the global DFT
referring to the global data area base of the external module.
Thus, external modules may be identified by the index in the
module local DFT, i. e. DFT[i] contains the address of a
pointer to the global data area of i-th external module.
 Local DFT is situated immediately before the module
global data area, i.e. the element DFT[i] address equals
[G]-i-1. Remark: such organization of information gives
possibility to access to statically existing entities
(procedures, variables, i.e. external module objects which may
be imported), only knowing the address of the global data area
base.
 P-stack is used for procedure local data location and
organization of procedure calls and return from them. Three
processor registers point to stack: S-register points to the
top of the P-stack, i.e. the first free P-stack word.
H-register points to the upper word in the storage area
reserved for stack (limit for S increasing). L-register points
to the local data area base of the procedure which is being
executed (current procedure). The overlap of the registers S
and H (i.e. situation when [S]>=[H]) is determined at the
hardware level with raising corresponding interruption.
 Current procedure local data area is stored in the
P-stack and represents a sequence of words which contain
either single-word local variables or pointers to a storage
area base allocated for variables of composite types. Access
to the local data is performed as indexation of L-register,
i.e. i-th word has [L]+i address. Special instructions
simplify access to words with numbers from 4 to 255.
 The first four local words (with numbers 0..3) are
reserved for special aims: the lower word points either to the
local data area base of the enveloping procedure (i.e.the
procedure which immediately contains a current procedure) or
on a calling module global data area if the procedure is

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 9 (c) KRONOS

called from the external module (static chain). The next word
points to the data area base of the procedure which calls the
current one (dynamic chain). The next word contains the value
for PC returning. In the last word, the processor interrupt
mask is saved (see remark for scheme (1) and M-code
interpreter).
 Scheme (1) illustrates code and statical and dynamical
data organization of process.

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 10 (c) KRONOS

 DFT Scheme 1
|------------|
| |<------ <-32 bits->
|------------| |
| *----+-- | |----------| ___ |--------|
|------------| | ----+-----* | --| F |->|proc0 *-+--
| Global | | :|----------| | --- |--------| |
: area : | 01| Module | | |proc1 *-+--+-
: tables : | 00| DFT | | |--------| | |
|____________| | ___ |==========| | : ... : | |
 --| G |-->| *-----+-- |========| | |
------------	---	----------		proc0	<--	
		*-----+-----	code			
------------		==========				
: : 02	Module					
: : 03	global			--------		
------------	04	data			proc1	<---
	: : :		code			
____________	FF	__________			--------	
<-- 32 bits--> <- 32 bits-> | : ... :
 | |________|
 -------------- ------------ <- 8 bits->
| P |-->| Process | |
 --- | descriptor | | |---------------------------|
 | (processor | ->| structured type constants |
 | registers | | (arrays, records, strings)|
 | copy) | |___________________________|
 |--------------|
 \/\/\/\/\/\/\/\/
 <-----
 <-- |
 /\/\/\/\/\/\/\ | |
 |--------------| | | | | \
| L |-->| static | | | |expression| |
 --- 00| chain *---+------ | stack | | 7 words
 |--------------| | | | |
 | dynamic | | | | |
 01| chain *---+--- |__________| /
 |--------------| <-32 bits->
 | Saved |
 02| PC ')|
 |--------------| ___
 03| M mask ")| | r | -- Processor registers.
 |--------------| ---
 04| Procedure | ') -- In case of call from external
 05| local | module, L2 has a mark,and the
 :: data : word L0 contains G-register
 FF| | instead of a static chain.
| S |-->|--------------|
 --- | | ") -- Current mask is saved in this
 : : word only when the first
 ___ |______________| change within procedure takes
| H |--><--- 32 bits---> place, which is marked in L2
 --- too. *)

ARCHITECTURE VIRTUAL MODULA-2 MACHINE

02-Dec-1988 11 (c) KRONOS

 VM2M code (M-code) represents the byte stream, i.e.
opcode always occupies a single byte. VM2M instructions have
no address fields, but opcode determines where operands are
situated. The following addressing modes are used in VM2M:

local : address = [L] + N
global : address = [G] + N
external : address = DFT[M]^ + N
intermediate : address = {[L]^} + N OR [[L]^]^ + N OR ...
indirect : address = [POP()]^ + N,

where M is the external module number, N - object index, "^"
symbol denotes indirection operator.
 Intermediate addressing mode represents the access to
non-local variables in procedure and realizes the pass through
the procedure static chain.
 Some instructions contain from 4 bits to 4 bytes of
immediate operands, and opcode always determines the total
length of immediate addresses following it. Program counter
(PC) increments from 1 to 4 bytes in dependence on the
instruction mode.
 VM2M instructions may be divided into the groups as
follows: arithmetical-logical instructions, control
organization instructions, instructions over A-stack,
auxiliary instructions.
 Stack instructions contain constant loading instructions,
instructions of stack exchang with local, global, external and
other data.
 All arithmetical-logical instructions operate over one or
two stack elements and store the result again on the stack.
 Control organization instructions are represented by
conventional conditional and unconditional jump instructions,
special instructions for implementing FOR and CASE statements,
procedure calling and returning instructions. They also
include instructions TRAP and TRANSFER (for process switch).
 There are different modes of procedure parameter passing.
In this implementation parameter passing is realized through
the arithmetical stack, which reduces consumptions on
parameter processing during procedure call.
 All interruptions are handled as switching of those
processes whose pointers are contained in the corresponding
interrupt vector elements (i.e. the element index equals to
the interruption number).
 VM2M has a collection of auxiliary instructions
simplifying processing of multivalues, procedure parameters,
I/O instructions and so on.
 More comprehensive information about VM2M may be obtained
after the search of M-code interpreter program text which
plays the role of microprogram specification of KRONOS family
processors.

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 12 (c) KRONOS

(* THE KRONOS 2.X PROCESSOR FAMILY

 INSTRUCTION SET

 00 20 40 60 80 A0 C0 E0

00 LI0 LLW LXB LSW0 LSS MOVE INCL
01 LI1 LGW LXW LSW1 QUIT LEQ RDS EXCL
02 LI2 LEW LGW2 LSW2 GETM GTR LSTA SLEQ
03 LI3 LSW LGW3 LSW3 SETM GEQ COMP SGEQ
04 LI4 LLW4 LGW4 LSW4 TRAP EQU GB INC1
05 LI5 LLW5 LGW5 LSW5 TRA NEQ GB1 DEC1
06 LI6 LLW6 LGW6 LSW6 TR ABS CHK INC
07 LI7 LLW7 LGW7 LSW7 IDLE NEG CHKZ DEC

08 LI8 LLW8 LGW8 LSW8 ADD OR ALLOC STOT
09 LI9 LLW9 LGW9 LSW9 SUB AND ENTR LODT
0A LI0A LLW0A LGW0A LSW0A MUL XOR RTN LXA
0B LI0B LLW0B LGW0B LSW0B DIV BIC NOP LPC
0C LI0C LLW0C LGW0C LSW0C SHL IN CX *BBU
0D LI0D LLW0D LGW0D LSW0D SHR BIT CI *BBP
0E LI0E LLW0E LGW0E LSW0E ROL NOT CF **BBLT
0F LI0F LLW0F LGW0F LSW0F ROR MOD CL

10 LIB SLW SXB SSW0 ***IO0 DECS CL0 SWAP
11 LID SGW SXW SSW1 IO1 DROP CL1 LPA
12 LIW SEW SGW2 SSW2 IO2 LODFV CL2 LPW
13 LIN SSW SGW3 SSW3 IO3 STORE CL3 SPW
14 LLA SLW4 SGW4 SSW4 IO4 STOFV CL4 SSWU
15 LGA SLW5 SGW5 SSW5 IO5 COPT CL5
16 LSA SLW6 SGW6 SSW6 IO6 CPCOP CL6
17 LEA SLW7 SGW7 SSW7 IO7 PCOP CL7

18 JFLC SLW8 SGW8 SSW8 FADD FOR1 CL8
19 JFL SLW9 SGW9 SSW9 FSUB FOR2 CL9
1A JFSC SLW0A SGW0A SSW0A FMUL ENTC CL0A
ACTIV
1B JFS SLW0B SGW0B SSW0B FDIV XIT CL0B USR
1C JBLC SLW0C SGW0C SSW0C FCMP ENTS CL0C SYS
1D JBL SLW0D SGW0D SSW0D FABS CL0D *NII
1E JBSC SLW0E SGW0E SSW0E FNEG ORJP CL0E
1F JBS SLW0F SGW0F SSW0F FFCT ANDJP CL0F
INVLD

 * -- Not implemented in KRONOS 2.2.
 ** -- Not implemented.
*** -- Instructions IO0..IO7 define the bus-processor interface.

--
(c) COPYRIGHT KRONOS Research Group 1985,1986,1987

 Last modification 30-Aug-1987 *)

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 13 (c) KRONOS

MODULE Kronos_Interpreter; (* Leo 27-Nov-85. (c) KRONOS *)
 (* Ned 30-Aug-87. (c) KRONOS *)

(* This interpreter is hardware specification. *)

FROM SYSTEM IMPORT ADDRESS, WORD, ADR;
FROM KRONOS IMPORT ROR, ROL, SHR, SHL;

TYPE CPUs = (KRONOS2_2, KRONOS2_5, KRONOS2_6);

VAR cpu: CPUs;

CONST ESdepth = 7; (* Expression stack depth *)

TYPE
 BYTE = [0..255];
 WORD16 = [0..0FFFFh];
 PC_Range = WORD16;
 CodePtr = POINTER TO ARRAY PC_Range OF BYTE;

VAR
 PC: PC_Range; (* program counter *)
 IR: [0..0FFh]; (* instruction register *)
 F : CodePtr; (* code segment address *)
 G : ADDRESS; (* global data segment address *)
 L : ADDRESS; (* local data segment address *)
 S : ADDRESS; (* P-stack top address *)
 H : ADDRESS; (* P-stack bound *)
 P : ADDRESS; (* process descriptor address *)
 M : BITSET; (* interrupt mask *)
 Ipt: BOOLEAN; (* interrupt request *)
 IptNo: WORD16; (* interrupt number *)

(* Hardware fixed interrupt numbers:

 01h timer
 02h processor halt
 03h memory violation
 04h power crash
 05h processor error
 06h interrupt vector input error
 07h unimplemented instruction
 08h on procedure call (KRONOS 2.2)
 09h on procedure return (KRONOS 2.2)

 0Bh trace (interrupt on each instruction) (KRONOS 2.5,2.6)

 40h P-stack overflow (S>H)
 41h integer overflow
 42h floating overflow
 43h floating underflow
 44h address overflow

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 14 (c) KRONOS

 49h instruction INVLD
 4Ah check bounds error
 4Bh wrong instruction parameter (hardware ASSERT)
 4Ch expression stack overflow or underflow

 Note 1. See the procedure NotMasked for interrupts masking
 method.

 Note 2. If there are processor models in brackets, then
 interrupt raises only for these models.
*)

CONST (* bit numbers in the word L2 (see fig.) *)
 ExternalBit = 1Fh;
 ChangeMaskBit = 1Eh;

CONST
 NonVectBit = 1Fh; (* bit masking program interrupts *)

(* Note. H-register contains the stack bound decremented on
 ESdepth+1 words to save the expression stack on process
 transfer.
*)

VAR Core: ARRAY ADDRESS OF WORD;
 ByteCore: ARRAY OF BYTE; (* combined with Core *)

MODULE InstructionFetch;

 IMPORT F, PC, WORD, WORD16, BYTE, Core, ADDRESS;
 EXPORT Next, Next2, Next4, GetPc;

 PROCEDURE Next(): BYTE;
 BEGIN INC(PC); RETURN INTEGER(F^[PC-1])
 END Next;

 PROCEDURE Next2(): WORD16;
 BEGIN RETURN Next()+Next()*100h
 END Next2;

 PROCEDURE Next4(): WORD;
 BEGIN RETURN Next2()+Next2()*10000h
 END Next4;

 PROCEDURE GetPc(procno: INTEGER): INTEGER;
 (* Gives PC at a procedure entry *)
 BEGIN RETURN Core[ADDRESS(F)+procno]
 END GetPc;

END InstructionFetch;

MODULE Mask;

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 15 (c) KRONOS

 IMPORT M, NonVectBit, BYTE;
 EXPORT NotMasked;

 PROCEDURE NotMasked(N: BYTE): BOOLEAN;
 BEGIN
 IF (N>=0Fh) & (N<3Fh) THEN RETURN (0 IN M)
 ELSIF (N< 0Fh) & (N>0) THEN RETURN (0 IN M) & (N IN M)
 ELSIF (N =3Fh) THEN RETURN (NonVectBit IN M)
 ELSE ASSERT(FALSE)
 END
 END NotMasked;

END Mask;

MODULE ExpressionStack;
 IMPORT WORD, ESdepth, Ipt, IptNo;
 EXPORT Push, Pop, Empty;

 VAR A: ARRAY [0..ESdepth-1] OF WORD; sp: [0..ESdepth];

 PROCEDURE Push(X: WORD);
 BEGIN A[sp]:=X;
 IF sp<ESdepth THEN INC(sp) ELSE Ipt:=TRUE; IptNo:=4Ch END;
 END Push;

 PROCEDURE Pop(): INTEGER;
 BEGIN
 IF sp=0 THEN Ipt:=TRUE; IptNo:=4Ch ELSE DEC(sp) END;
 RETURN A[sp];
 END Pop;

 PROCEDURE Empty(): BOOLEAN;
 BEGIN RETURN sp=0 END Empty;

BEGIN sp:=0 END ExpressionStack;

MODULE ProcessSupport;
 IMPORT PC,G,F,H,L,S,P,M, Core, NotMasked, ESdepth
 , CodePtr, WORD16, ADDRESS;
 FROM ExpressionStack IMPORT Pop, Push, Empty;

 EXPORT SaveExpStack, RestoreExpStack, Transfer, TRAP;

 PROCEDURE SaveExpStack;
 VAR c: CARDINAL; (* stack depth counter *)
 BEGIN c:=0;
 WHILE NOT Empty() DO Core[S]:=Pop(); INC(S); INC(c) END;
 Core[S]:=c; INC(S);
 END SaveExpStack;

 PROCEDURE RestoreExpStack;
 VAR c: CARDINAL; (* stack depth counter *)
 BEGIN DEC(S); c:=Core[S];

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 16 (c) KRONOS

 WHILE c>0 DO DEC(c); DEC(S); Push(Core[S]) END;
 END RestoreExpStack;

 PROCEDURE SaveRegs;
 BEGIN SaveExpStack;
 Core[P+0]:=G; Core[P+1]:=L;
 Core[P+2]:=PC; Core[P+3]:=CARDINAL(M);
 Core[P+4]:=S; Core[P+5]:=H+ESdepth+1;
 END SaveRegs;

 PROCEDURE RestoreRegs;
 BEGIN
 G:=Core[P+0]; F :=CodePtr(Core[G]);
 L:=Core[P+1]; PC:=Core[P+2]; M:=BITSET(Core[P+3]);
 S:=Core[P+4]; H:=Core[P+5]-ESdepth-1;
 RestoreExpStack;
 END RestoreRegs;

 PROCEDURE Transfer(pFrom,pTo: ADDRESS);
 VAR j: CARDINAL;
 BEGIN (* Note: pFrom may be equal to pTo *)
 j:=Core[pTo]; SaveRegs; Core[pFrom]:=P; Core[1]:=P;
 P:=j; RestoreRegs; Core[0]:=P;
 END Transfer;

 PROCEDURE TRAP(N: WORD16);
 BEGIN Core[P+6]:=N;
 IF N>3Fh THEN N:=3Fh END;
 IF NotMasked(N) THEN Transfer(N*2,Core[N*2+1]) END;
 END TRAP;

END ProcessSupport;

(* P-stack marking before a procedure call *)

PROCEDURE Mark(X: ADDRESS; External: BOOLEAN);
 VAR i: ADDRESS;
BEGIN i:=S;
 Core[S]:=X; INC(S); (* static chain *)
 Core[S]:=L; INC(S); (* dynamic chain *)
 IF External THEN Core[S]:=WORD(BITSET(PC)+{ExternalBit})
 ELSE Core[S]:=PC
 END; INC(S,2); L:=i;
END Mark;

PROCEDURE ioP2_2;
BEGIN ASSERT(IR-90h IN {0..7});
(* See KRONOS 2.2 specification *)
END ioP2_2;

PROCEDURE ioP2_5;
BEGIN ASSERT(IR-90h IN {0..7});
(* Input/output requests transmitted to other processors via the

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 17 (c) KRONOS

 common memory.
*)
END ioP2_5;

PROCEDURE ioP2_6;
BEGIN ASSERT(IR-90h IN {0..7});
(* Depends on a bus *)
END ioP2_6;

(* Working variables of interpreter: *)

VAR i,j,k: CARDINAL; X,Y : REAL;
 v,w : BITSET; a,b : CHAR;
 adr,adr1,sz,hi,low: CARDINAL;

PROCEDURE ConsolMicroProgram;
BEGIN
(* Consol microprogram provides program bootstrap and executes
 Transfer(0,1) by the operator's command "Go".
*)
END ConsolMicroProgram;

PROCEDURE Interpret;
BEGIN
 CASE IR OF
 00h..0Fh:(* LI0..LI0F Load Immediate *) Push(IR MOD 10h);

 |10h: (* LIB Load Immediate Byte *) Push(Next())
 |11h: (* LID Load Immediate Double byte *) Push(Next2())
 |12h: (* LIW Load Immediate Word *) Push(Next4())
 |13h: (* LIN Load Immediate NIL *) Push(NIL)
 |14h: (* LLA Load Local Address *) Push(L+Next())
 |15h: (* LGA Load Global Address *) Push(G+Next())
 |16h: (* LSA Load Stack Address *) Push(Pop()+Next())
 |17h: (* LEA Load External Addres *)
 i:=G-Next()-1; (* Module DFT index *)
 adr:=Core[i]; (* Pointer to a global DFT element *)
 Push(Core[adr]+Next())
 |18h: (* JLFC Jump Long Forward Condition *)
 IF Pop()=0 THEN PC:=Next2()+PC
 ELSE INC(PC,2) END
 |19h: (* JLF Jump Long Forward *) PC:=Next2()+PC;
 |1Ah: (* JSFC Jump Short Forward Condition *)
 IF Pop()=0 THEN PC:=Next()+PC
 ELSE INC(PC) END
 |1Bh: (* JSF Jump Short Forward *) PC:=Next()+PC;
 |1Ch: (* JLBC Jump Long Back Condition *)
 IF Pop()=0 THEN PC:=-Next2()+PC
 ELSE INC(PC,2) END
 |1Dh: (* JLB Jump Long Back *) PC:=-Next2()+PC;
 |1Eh: (* JSBC Jump Short Back Condition *)
 IF Pop()=0 THEN PC:=-Next()+PC
 ELSE INC(PC) END

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 18 (c) KRONOS

 |1Fh: (* JSB Jump Short Back *) PC:=-Next()+PC;
 |20h: (* LLW Load Local Word *) Push(Core[L+Next()])
 |21h: (* LGW Load Global Word *) Push(Core[G+Next()])
 |22h: (* LEW Load External Word *)
 i:=G-Next()-1; adr:=Core[Core[i]]; (* external G *)
 Push(Core[adr+Next()])
 |23h: (* LSW Load Stack addressed Word *)
 Push(Core[Pop()+Next()])
 |24h..2Fh: (* LLW0..LLW0F Load Local Word *)
 Push(Core[L+IR MOD 10h])
 |30h: (* SLW Store Local Word *) Core[L+Next()]:=Pop()
 |31h: (* SLW Store Global Word *) Core[G+Next()]:=Pop()
 |32h: (* SEW Store External Word *)
 i:=G-Next()-1; adr:=Core[Core[i]]; (* external G *)
 Core[adr+Next()]:=Pop()
 |33h: (* SSW Store Stack addressed Word *)
 i:=Pop(); Core[Pop()+Next()]:=i
 |34h..3Fh: (* SLW0..SLW0F Store Local Word *)
 Core[L+IR MOD 10h]:=Pop()

 |40h: (* LXB Load Indexed Byte *)
 i:=Pop(); Push(ByteCore[Pop()*4+i]);
 |41h: (* LXW Load Indexed Word *)
 i:=Pop(); Push(Core[Pop()+i])
 |42h..4Fh: (* LGW02..LGW0F Load Global Word *)
 Push(Core[G+IR MOD 10h])
 |50h: (* SXB Store Indexed Byte *)
 j:=Pop(); i:=Pop(); ByteCore[Pop()*4+i]:=j;
 |51h: (* SXW Store Indexed Word *)
 j:=Pop(); i:=Pop(); Core[Pop()+i]:=j
 |52h..5Fh: (* SGW02..SGW0F Store Global Word *)
 Core[G+IR MOD 10h]:=Pop()

 |60h..6Fh: (* LSW00..LSW0F Load Stack addressed Word *)
 Push(Core[Pop()+IR MOD 10h])
 |70h..7Fh: (* SSW00..SSW0F Store Stack addressed Word *)
 i:=Pop(); Core[Pop()+IR MOD 10h]:=i

 |80h: TRAP(7h);
 |81h: (* QUIT Stop processor *) ConsolMicroProgram
 |82h: (* GETM Get Mask *) Push(M)
 |83h: (* SETM Set Mask *)
 IF NOT (ChangeMaskBit IN BITSET(Core[L+2])) THEN
 (* mask is changed the first time *)
 Core[L+2]:=WORD(BITSET(Core[L+2])+{ChangeMaskBit});
 Core[L+3]:=WORD(M)
 END; M:=BITSET(Pop);
 |84h: (* TRAP interrupt simulation *) TRAP(Pop())
 |85h: (* TRA Transfer control between process *)
 i:=Pop(); Transfer(Pop(),i)
 |86h: (* TR Test & Reset *)
 i:=Pop(); Push(Core[i]); Core[i]:=0
 |87h: (* IDLE IDLE process *)

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 19 (c) KRONOS

 DEC(PC); REPEAT (* not occupying the bus *) UNTIL Ipt

(* In the following six instructions and also in instructions
 MOD, NEG, ABS, FOR2, INC, DEC, INC1, DEC1 the interrupt
 IptNo=41h is raised in case of overflow.
*)
 |88h: (* ADD integer ADD *) Push(Pop()+Pop())
 |89h: (* SUB integer SUB *) i:=Pop(); Push(Pop()-i);
 |8Ah: (* MUL integer MUL *) Push(Pop()*Pop())
 |8Bh: (* DIV integer DIV *) i:=Pop(); Push(Pop() DIV i)
 |8Ch: (* SHL integer SHift Left *)
 i:=Pop() MOD 20h; Push(SHL(Pop(),i))
 |8Dh: (* SHR integer SHift Right *)
 i:=Pop() MOD 20h; Push(SHR(Pop(),i))

 |8Eh: (* ROL word ROtate Left *)
 i:=Pop() MOD 20h; Push(ROL(Pop(),i))
 |8Fh: (* ROR word ROtate Right *)
 i:=Pop() MOD 20h; Push(ROR(Pop(),i))
 |90h..97h: (* io section *)
 CASE cpu OF
 |KRONOS2_2: ioP2_2
 |KRONOS2_5: ioP2_5
 |KRONOS2_6: ioP2_6
 ELSE ASSERT(FALSE);
 END

(* In the following eight instructions the interrupts 42h or 43h
 are raised respectively in case of overflow or order
 underflow.
*)
 |98h: (* FADD Float ADD *) Push(REAL(Pop())+REAL(Pop()))
 |99h: (* FSUB Float SUB *) X:=REAL(Pop()); Push(REAL(Pop())-X)
 |9Ah: (* FMUL Float MUL *) Push(REAL(Pop())*REAL(Pop()))
 |9Bh: (* FDIV Float DIV *) X:=REAL(Pop()); Push(REAL(Pop())/X)
 |9Ch: (* FCMP Float CoMPare *) X:=REAL(Pop()); Y:=REAL(Pop());
 IF X<Y THEN Push(1); Push(0)
 ELSIF X>Y THEN Push(0); Push(1)
 ELSE Push(0); Push(0) END
 |9Dh: (* FABS Float ABS *) X:=REAL(Pop());
 IF X<0.0 THEN Push(-X) ELSE Push(X) END
 |9Eh: (* FNEG Float NEG *) Push(-REAL(Pop()))
 |9Fh: (* FFCT Float FunCTions *) i:=Next();
 IF i=0 THEN Push(FLOAT(INTEGER(Pop())))
 ELSIF i=1 THEN Push(TRUNC(REAL(Pop())))
 ELSE DEC(PC); TRAP(7h) END;

 |0A0h: (* LSS int LeSS *) i:=Pop(); Push(Pop()<i)
 |0A1h: (* LEQ int Less or EQual *) i:=Pop(); Push(Pop()<=i)
 |0A2h: (* GTR int GreaTeR *) i:=Pop(); Push(Pop()>i)
 |0A3h: (* GEQ int Greater or EQual *) i:=Pop(); Push(Pop()>=i)
 |0A4h: (* EQU int EQUal *) Push(Pop()=Pop())
 |0A5h: (* NEQ int Not EQual *) Push(Pop()#Pop())

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 20 (c) KRONOS

 |0A6h: (* ABS int ABSolute value *) Push(ABS(Pop()))
 |0A7h: (* NEG int NEGate *) Push(-Pop())

 |0A8h: (* OR logical bit per bit OR *)
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w+v)
 |0A9h: (* AND logical bit per bit AND *)
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w*v)
 |0AAh: (* XOR logical bit per bit XOR *)
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w/v)
 |0ABh: (* BIC logical bit per bit BIt Clear *)
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w-v)
 |0ACh: (* IN membership to bitset *)
 v:=BITSET(Pop()); Push(Pop() IN v)
 |0ADh: (* BIT setBIT *) i:=Pop();
 IF (i<0) OR (i>=20h) THEN TRAP(4Ah)
 ELSE w:={}; INCL(w,i); Push(w) END

 |0AEh: (* NOT boolean NOT (not bit per bit!) *) Push(Pop()=0)
 |0AFh: (* MOD integer MODulo *) i:=Pop(); Push(Pop() MOD i)

 |0B0h: (* DECS DECriment S register (reverse to ALLOC) *)
 DEC(S,Pop())
 |0B1h: (* DROP *) i:=Pop();
 |0B2h: (* LODF reLOaD expr. stack after Function return *)
 i:=Pop(); RestoreExpStack; Push(i)
 |0B3h: (* STORE STORE expr. stack before function call *)
 IF S+ESdepth+1>H THEN DEC(PC); TRAP(40h)
 ELSE SaveExpStack
 END
 |0B4h: (* STOFV STOre expr. stack with Formal function Value
 on top before function call (see instruction CF)
 *)
 IF S+ESdepth+2>H THEN DEC(PC); TRAP(40h)
 ELSE i:=Pop(); SaveExpStack; Core[S]:=i; INC(S) END
 |0B5h: (* COPT COPy Top of expr. stack *)
 i:=Pop(); Push(i); Push(i)
 |0B6h: (* CPCOP Character array Parameter COPy *)
 i:=Pop(); (* High *) sz:=(i+4) DIV 4;
 IF S+sz>H THEN Push(i); DEC(PC); TRAP(40h)
 ELSE Core[L+Next()]:=S; adr:=Pop();
 WHILE sz>0 DO Core[S]:=Core[adr]; INC(S); INC(adr) END
 END
 |0B7h: (* PCOP structure Parameter allocate and COPy *)
 i:=Pop(); (* High *) sz:=i+1;
 IF S+sz>H THEN Push(i); DEC(PC); TRAP(40h)
 ELSE Core[L+Next()]:=S; adr:=Pop();
 WHILE sz>0 DO Core[S]:=Core[adr]; INC(S); INC(adr) END
 END
 |0B8h: (* FOR1 enter FOR statement *)
 IF S+2>H THEN DEC(PC); TRAP(40h)
 ELSE sz:=Next(); (* =0 up; #0 down *)
 hi:=Pop(); low:=Pop(); adr:=Pop(); k:=Next2()+PC;
 IF ((sz=0) & (low<=hi)) OR ((sz#0) & (low>=hi)) THEN

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 21 (c) KRONOS

 Core[adr]:=low;
 Core[S]:=adr; INC(S); Core[S]:=hi; INC(S);
 ELSE (* loop isn't executed *) PC:=k
 END
 END
 |0B9h: (* FOR2 end of FOR statment *)
 hi:=Core[S-1]; adr:=Core[S-2]; sz:=Next();
 IF sz>7Fh THEN sz:=7Fh-sz END; (* step [-128..127] *)
 k:=-Next2()+PC; i:=Core[adr]+sz;
 IF ((sz>=0) & (i>hi)) OR ((sz<0) & (i<hi)) THEN
 DEC(S,2); (* terminate *)
 ELSE Core[adr]:=i; PC:=k (* continue *)
 END
 |0BAh: (* ENTC ENTer Case statment *)
 IF S+1>H THEN DEC(PC); TRAP(40h)
 ELSE PC:=Next2()+PC; (* jump to case table *)
 k:=Pop(); low:=Next2(); hi:=Next2();
 Core[S]:=PC + 2*(hi-low) + 4; INC(S); (* PC for exit *)
 IF (k>=low) & (k<=hi) THEN
 PC:=PC+2*(k-low+1) (* jump into case table *)
 END;
 PC:=-Next2()+PC (* jump back to variant's code *)
 END
 |0BBh: (* XIT eXIT from case or control structure *)
 DEC(S); PC:=Core[S]
 |0BCh: (* ENTS ENTer control Structure *)
 IF S+1>H THEN DEC(PC); TRAP(40h)
 ELSE Core[S]:=Next2()+PC; INC(S) END
 |0BEh: (* ORJP short circuit OR JumP *)
 IF Pop()#0 THEN Push(1); PC:=Next()+PC
 ELSE INC(PC) END
 |0BFh: (* ANDJP short circuit AND JumP *)
 IF Pop()=0 THEN Push(0); PC:=Next()+PC
 ELSE INC(PC) END

 |0C0h: (* MOVE MOVE block *) sz:=Pop();
 i:=Pop(); j:=Pop();
 WHILE sz>0 DO
 Core[j]:=Core[i]; INC(i); INC(j); DEC(sz)
 END
 |0C1h: (* RDS ReaD String *) sz:=Next();
 IF sz>20h THEN DEC(PC,2); TRAP(4Bh)
 ELSE adr:=Pop();
 WHILE sz>0 DO Core[adr]:=Next4(); INC(adr); DEC(sz) END
 END
 |0C2h: (* LSTA Load STring Address *) Push(Core[G+1]+Next2());
 |0C3h: (* COMP COMPare strings *) i:=Pop()*4; j:=Pop()*4;
 REPEAT a:=CHAR(ByteCore[i]); b:=CHAR(ByteCore[j]);
 INC(i); INC(j)
 UNTIL (a=0c) OR (b=0c) OR (a#b); Push(a); Push(b)
 |0C4h: (* GB Get procedure Base n levels down *)
 i:=L; k:=Next();
 WHILE k>0 DO i:=Core[i]; DEC(k) END; Push(i)

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 22 (c) KRONOS

 |0C5h: (* GB1 Get procedure Base 1 level down *) Push(Core[L])
 |0C6h: (* CHK range bounds CHecK *)
 hi:=Pop(); low:=Pop(); i:=Pop(); Push(i);
 IF (i<low) OR (i>hi) THEN
 Push(low); Push(hi); TRAP(4Ah)
 END
 |0C7h: (* CHKZ array bounds CHecK (low=Zero) *)
 hi:=Pop(); i:=Pop(); Push(i);
 IF (i<0) OR (i>hi) THEN Push(hi); TRAP(4Ah) END
 |0C8h: (* ALLOC ALLOCate block *) sz:=Pop();
 IF S+sz>H THEN Push(sz); DEC(PC); TRAP(40h)
 ELSE Push(S); INC(S,sz) END
 |0C9h: (* ENTR ENTeR procedure *) sz:=Next();
 IF S+sz>H THEN DEC(PC,2); TRAP(40h)
 ELSE INC(S,sz) END
 |0CAh: (* RTN ReTurN from procedure *)
 S:=L; L:=Core[S+1]; PC:=WORD(BITSET(Core[S+2])*{0..0Fh});
 IF ExternalBit IN BITSET(Core[S+2]) THEN
 (* external called *)
 G:=Core[S]; F:=CodePtr(Core[G])
 END;
 IF ChangeMaskBit IN BITSET(Core[S+2]) THEN
 (* mask was changed *)
 M:=BITSET(Core[S+3])*{0..10h}
 END;
 |0CBh: (* NOP No OPeration *)
 |0CCh: (* CX Call eXternal *)
 IF S+4<=H THEN j:=Core[G-Next()-1]; (* big DFT *)
 i:=Next(); Mark(G,TRUE);
 G:=Core[j]; F:=CodePtr(Core[G]); PC:=GetPc(i);
 ELSE DEC(PC); TRAP(40h) END
 |0CDh: (* CI Call procedure at Intermediate level *)
 IF S+4<=H THEN
 i:=Next(); Mark(Pop(),FALSE); PC:=GetPc(i);
 ELSE DEC(PC); TRAP(40h) END
 |0CEh: (* CF Call Formal procedure *)
 IF S+3<=H THEN i:=Core[S-1]; DEC(S); Mark(G,TRUE);
 k:=i DIV 1000000h; i:=i MOD 1000000h;
 G:=Core[i]; F:=CodePtr(Core[G]); PC:=GetPc(k);
 ELSE DEC(PC); TRAP(40h) END
 |0CFh: (* CLN
0CПo LСal procedure *)
 IF S+4<=H THEN i:=Next(); Mark(L,FALSE); PC:=GetPc(i);
 ELSE DEC(PC); TRAP(40h) END
 |0D0h..0DFh: (* CL0..CL0F Call Local procedure *)
 IF S+4<=H THEN Mark(L,FALSE); PC:=GetPc(IR MOD 10h);
 ELSE DEC(PC); TRAP(40h) END
 |0E0h: (* INCL INCLude in set *) i:=Pop();
 IF (i<0) OR (i>1Fh) THEN Push(i); DEC(PC); TRAP(4Ah)
 ELSE j:=Pop(); w:=BITSET(Core[j]); INCL(w,i);
 Core[j]:=CARDINAL(w)
 END
 |0E1h: (* EXCL EXCLude from set *) i:=Pop();

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 23 (c) KRONOS

 IF (i<0) OR (i>1Fh) THEN Push(i); DEC(PC); TRAP(4Ah)
 ELSE j:=Pop(); w:=BITSET(Core[j]); EXCL(w,i);
 Core[j]:=CARDINAL(w)
 END
 |0E2h: (* SLEQ bitSet Less or EQual *)
 w:=BITSET(Pop()); v:=BITSET(Pop()); Push(v<=w)
 |0E3h: (* SGEQ bitSet Greater or EQual *)
 w:=BITSET(Pop()); v:=BITSET(Pop()); Push(v>=w)
 |0E4h: (* INC1 INCrement by 1 *) INC(Core[Pop()])
 |0E5h: (* DEC1 DECrement by 1 *) DEC(Core[Pop()])
 |0E6h: (* INC INCrement *) i:=Pop(); INC(Core[Pop()],i)
 |0E7h: (*)
 IF S+1>H THEN DEC(PC); TRAP(40h)
 ELSE Core[S]:=Pop(); INC(S)
 END
 |0E9h: (* LODT LOaD Top of proc stack *)
 DEC(S); Push(Core[S])
 |0EAh: (* LXA Load indeXed Address *)
 sz:=Pop(); i:=Pop(); adr:=Pop(); Push(adr+i*sz)
 |0EBh: (* LPC Load Procedure Constant *)
 i:=Next(); j:=Next(); Push(j*1000000h+Core[G-i-1])

(* The following 3 instructions deal with bit slices. Bit
 address is the pair (address, bit offset). Bit offset can be
 greater than 32. The slice may be out of word bounds.
*)
 |0ECh: (* BBU Bit Block Unpack *)
 sz:=Pop();
 IF (sz<1) OR (sz>32) THEN
 Push(sz); DEC(PC); TRAP(4Ah)
 END;
 i:=Pop(); adr:=Pop();
 (* j is a bit slice of size -sz- beginning from bit
 address (adr,i).
 *)
 Push(j);
 |0EDh: (* BBP Bit Block Pack *)
 j:=Pop(); sz:=Pop();
 IF (sz<1) OR (sz>32) THEN
 Push(sz); DEC(PC); TRAP(4Ah)
 END;
 i:=Pop(); adr:=Pop();
 (* Packing up -sz- of least significant bits from j and
 put them to address (adr,i).
 *)
 |0EEh: (* BBLT Bit BLock Transfer *)
 sz:=Pop(); (* size can be greater than 32 *)
 i:=Pop(); adr:=Pop();
 j:=Pop(); adr1:=Pop();
 (* Copies -sz- bits from (adr,i) to (adr1,j) *)
 |0F0h: (* SWAP *)
 i:=Pop(); j:=Pop(); Push(i); Push(j)
 |0F1h: (* LPA Load Parameter Address *)

ARCHITECTURE М-CODE INTERPRETER

02-Dec-1988 24 (c) KRONOS

 Push(L-Next()-1);
 |0F2h: (* LPW Load Parameter WORD *)
 Push(Core[L-Next()-1]);
 |0F3h: (* SPW Store Parameter WORD *)
 Core[L-Next()-1]:=Pop();
 |0F4h: (* SSWU Store Stack Word Undestructive *)
 i:=Pop(); Core[Pop()]:=i; Push(i)
 |0FAh: (* ACTIVe process *) Push(P)
 |0FBh: (* USR User defined functions *) i:=Next(); (* *)
 |0FCh: (* SYS rare SYStem functions *)
 CASE Next() OF
 |00h: (* PID Processor IDent *)
 (* Push(PID) *)
 |01h..0FFh: (* depends on a processor model *)
 END;
 |0FDh: (* NII Never Implemented Instruction *) TRAP(7h);
 |0FFh: (* INVLD INVaLiD operation *) TRAP(49h)
 ELSE (* unimplemented instruction *) TRAP(7h)
 END (*CASE*)
END Interpret;

BEGIN (* "Power On" *)
 (* cpu:=KRONOS2_2 | KRONOS2_5 | KRONOS2_6 *)
 ORIGIN(ByteCore,ADR(Core),SIZE(Core));
 ConsolMicroProgram;
 LOOP
 IF Ipt THEN TRAP(IptNo) END;
 IR:=Next();
 Interpret;
 END (*LOOP*)
END Kronos_Interpreter.

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 25 (c) KRONOS

 GENERAL DESCRIPTION OF KRONOS INSTRUCTIONS

 This description is not an independent document. It must
be perceived as the detailed, vast comments for "Kronos
Interpreter". Definitions of the main concepts of Kronos
acrhitecture are omitted here. They may be found in the
section "VIRTUAL MODULA-2 MACHINE".

 The execution of any instruction is starting from
fetching its code. Instruction code is 8 bit width and treated
as unique code of instruction. It restrictly determines the
algorithm of instruction execution. There are not any fields
or addressation modes packed in the instruction code.
Instruction code is a byte and nothing more. In rare cases the
group of instructions may have the same code (the so-named
escape instructions). In such cases (as, for example FFCT) the
next byte determines which instruction of the group will be
executed.
 After instruction code fetching, the algorithm of its
execution is detemined. Some operands of the instruction layed
on Expression Stack (ES), the other (if necessary) may follow
the instruction code, as a sequence of bytes. The last ones
are named immediately (constant) operands, but they are never
absolute addresses. Some notions are necessary for the
instruction description (see, also, "Kronos Interpreter").

 Code Fetching

 Code fetching is performed by the procedures "Next",
"Next2" and "Next4". They are fetching a byte, two bytes, or a
word (four bytes), respectively, and increase the program
counter (PC) by 1,2 or 4. In terms of Modula-2 these
procedures may be written:

 PROCEDURE Next(): BYTE;
 BEGIN INC(PC); RETURN INTEGER(F^[PC-1]) END Next;

 PROCEDURE Next2(): WORD16;
 BEGIN RETURN Next()+Next()*100h END Next2;

 PROCEDURE Next4(): WORD;
 BEGIN RETURN Next2()+Next2()*10000h END Next4;

 Expression Stack

 Expression stack is used for evaluation expressions and
manipulations with instruction arguments. It executes two
operations "Pop" (take from the stack) and "Push" (put into

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 26 (c) KRONOS

the stack):

 PROCEDURE Push(X: WORD);
 BEGIN
 A[sp]:=X;
 IF sp<ESdepth THEN INC(sp) ELSE Ipt:=TRUE; IptNo:=4Ch END;
 END Push;

 PROCEDURE Pop(): INTEGER;
 BEGIN
 IF sp=0 THEN Ipt:=TRUE; IptNo:=4Ch ELSE DEC(sp) END;
 RETURN A[sp];
 END Pop;

 If the stack is empty when "Pop" is executed or full
before "Push" trap 4Ch is raised (this useful feature is added
for compiler debugging).

 Words "pop from the stack" denote following: "take the
value of the top element of the stack and then decrement the
stack counter by 1".

 Words "push into the stack" denotes following: "put the
value above the top element of the stack and then increment
the stack counter by 1".

 By default, the word "stack" without any prefix denotes
"expression stack".

 4-bits Immediate Operands

 Since Kronos instruction set is very small (less than 128
instructions) it was possible to use 4 least significant bits
in some frequently executed instructions for short (4 bits)
form of offset. These instructions may be described as a set
of 16 different instructions (in "Kronos Interpreter") or as a
single 4 bit instruction with 4 bit the immediately followed
operand (in this DESCRIPTION).

Note.
 All numbers used in the text are hexidecimal, and so are
 postfixed by character 'h' - 'hex'.

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 27 (c) KRONOS

LI0..LI0F
Load Immediate

Operation Code: 4 bits 0h
Immediate Operands: 4 bits 00h..0Fh
Instruction Length: 1 byte
Action:
 Loads the value of the least significant 4 bits of
 instruction code (in the range 00h..0Fh), and pushes it
 into the stack as 32 bit words with leadings zeros. PC
 increments by 1.

Interpreter:
 Push(IR MOD 10h);

LIB
Load Immediate Byte

Operation Code: 1 byte 10h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 байта
Action:
 Loads the value of the immediate operand (byte following
 the instruction code) in the range 0..0FFh, and pushes it
 into the stack as 32 bit words with leadings zeros. PC
 increments by 2.

Interpreter:
 Push(Next())

LID
Load Immediate Double Byte

Operation Code: 1 byte 11h
Immediate Operands: 2 байта 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 Loads the value of the immediate operand (2 bytes
 following the instruction code) in the range 0..0FFFFh,
 and pushes it into the stack as 32 bit words with
 leadings zeros. PC increments by 3.

Interpreter:
 Push(Next2())

LIW
Load Immediate Word

Operation Code: 1 byte 12h
Immediate Operands: 4 байта 00h..0FFFFFFFFh

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 28 (c) KRONOS

Instruction Length: 5 байт
Action:
 Loads the value of the immediate operand (4 bytes
 following the instruction code), and pushes it into the
 stack as 32 bit words. PC increments by 5.

Interpreter:
 Push(Next4())

Note:
 Kronos used complement to 2**32 representaion for
 negative integer numbers. The integer numbers lies in the
 range:

 MIN(INTEGER)=-2**31 .. MAX(INTEGER)=2**31-1
 80000000h .. 7FFFFFFFh

 "-1" reprsents as 0FFFFFFFFh.

 Only the instruction LIW allows one to push negative
 numbers into the stack. But there exists the other method
 to generate small negative numbers by loading of its
 absolute value using LI,LIB,LID and then change a sign by
 the instruction NEG. For current models of processors it
 is more effective.

LIN
Load Immediate Nil

Operation Code: 1 byte 13h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Loads the non-existent address (NIL) and pushes it into
 the stack. PC increments by 1. The NIL value is specific
 and has been changed from one processor model to another,
 without the influence on program portability.

Interpreter:
 Push(NIL)

LLA
Load Local Address

Operation Code: 1 byte 14h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Adds contents of L_register and the immediate operands
 (byte following the instruction code) and pushes the sum
 into the stack. PC increments by 2. This instruction

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 29 (c) KRONOS

 allows one to accept the address of a local variable at
 the top of the stack. When offset of a variable is
 greater than 0FFh, the problem is solved by combining
 LLA, LI,LIB,LID or LIW and ADD instructions.

Interpreter:
 Push(L+Next())

LGA
Load Global Address

Operation Code: 1 byte 15h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 байта
Action:
 Adds contents of the G_register and the immediate
 operands (byte following the instruction code) and pushes
 the sum into the stack. PC increments by 2. This
 instruction allows one to accept the address of a global
 variable at the top of the stack. When offset of a
 variable is greater than 0FFh, the problem is solved by
 combining LLA, LI,LIB,LID or LIW and ADD instructions.

Interpreter:
 Push(G+Next())

LSA 16h
Load Stack Address

Operation Code: 1 byte 16h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 байта
Action:
 Adds contents of the top of the stack and the immediate
 operands (byte following the instruction code), pops the
 top of the stack and pushes the sum into the stack. PC
 increments by 2. This instruction allows one to overhead
 the address layed at the top of the stack by address
 incremented by offset. It is used for accepting addresses
 of fields when record address has been already loaded
 into the stack. When offset of the field is greater than
 0FFh, the problem is solved by combining LI,LIB,LID or
 LIW and ADD instructions.

Note:
 LSA XX is semantically equivalent to the sequence LIB XX
 ADD. In the RISC model of Kronos this instruction will be
 discarded.

Interpreter:
 Push(Pop()+Next())

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 30 (c) KRONOS

LEA
Load External Address

Operation Code: 1 byte 17h
Immediate Operands: 2 байта 00h..0FFh
Instruction Length: 3 bytes
Action:
 The first the immediate operand (byte following the
 instruction code) is the module number (M) and the next
 one is the word offset (N). Loads the memory word at the
 address G_register-M-1. It is the pointer to module
 global area table (the so-called DFT), and after
 dereferencing (see Note), it (EA) points to the global
 area of the module M. Pushes the sum of N and EA into the
 stack. PC increments by 3.

Note:
 In the RISC model of Kronos processor external
 dereferensing will be discarded.

Interpreter:
 i:=G-Next()-1; (* index in local DFT of current module *)
 adr:=Core[i]; (* pointer to DFT *)
 Push(Core[adr]+Next())

 For RISC model:

 i:=G-Next()-1; (* index in local DFT of current module *)
 adr:=Core[i]; (* pointer to G-Area of External Module *)
 Push(adr+Next())

JFLC
Jump Forward Long Condition

Operation Code: 1 byte 18h
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 Takes 2 byte immediate operand - the potential offset to
 the next instruction (OFFSET). PC increments by 3. Pops
 the top of the stack and if it is zero the PC increments
 by OFFSET, otherwise (any nonzero value) goes to the next
 instruction.

Interpreter:
 IF Pop()=0 THEN PC:=Next2()+PC
 ELSE INC(PC,2) END

JFL
Jump Forward Long

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 31 (c) KRONOS

Operation Code: 1 byte 19h
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 Takes 2 byte immediate operand - the offset to the next
 instruction (OFFSET). PC increments by 3+OFFSET.

Interpreter:
 PC:=Next2()+PC;

JFSC
Jump Forward Short Condition

Operation Code: 1 byte 1Ah
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Takes 1 byte immediate operand - the potential offset to
 the next instruction (OFFSET). PC increments by 2. Pops
 the top of the stack and if it is zero PC increments by
 OFFSET, otherwise (any nonzero value) goes to the next
 instruction.

Interpreter:
 IF Pop()=0 THEN PC:=Next()+PC
 ELSE INC(PC) END

JFS
Jump Forward Short

Operation Code: 1 byte 1Bh
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Takes 1 byte immediate operand - the offset to the next
 instruction (OFFSET). PC increments by 2+OFFSET.

Interpreter:
 PC:=Next()+PC;

JBLC
Jump Back Long Condition

Operation Code: 1 byte 1Ch
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 Takes 2 byte immediate operand - the potential offset to
 the next instruction (OFFSET). PC increments by 3. Pops
 the top of the stack and if it is zero the PC decrements

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 32 (c) KRONOS

 by OFFSET, otherwise (any nonzero value) goes to the next
 instruction.

Interpreter:
 IF Pop()=0 THEN PC:=-Next2()+PC
 ELSE INC(PC,2) END

JBL
Jump Back Long

Operation Code: 1 byte 1Dh
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 Takes 2 byte immediate operand - the offset to the next
 instruction (OFFSET). PC decrements by OFFSET-3.

Interpreter:
 PC:=-Next2()+PC;

JBSC
Jump Back Short Condition

Operation Code: 1 byte 1Eh
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Takes 1 byte immediate operand - the potential offset to
 the next instruction (OFFSET). PC increments by 2. Pops
 the top of the stack and if it is zero the PC decrements
 by OFFSET, otherwise (any nonzero value) goes to the next
 instruction.

Interpreter:
 IF Pop()=0 THEN PC:=-Next()+PC
 ELSE INC(PC) END

JBS
Jump Back Short

Operation Code: 1 byte 1Fh
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Takes 1 byte immediate operand - the offset to the next
 instruction (OFFSET). PC decrements by OFFSET-2.

Interpreter:
 PC:=-Next()+PC;

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 33 (c) KRONOS

LLW
Load Local Word

Operation Code: 1 byte 20h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Evaluates EA as a sum of the L_register and the immediate
 operand. Loads a word from EA memory location and pushes
 it into the stack. PC increments by 2. When offset is
 greater than 0FFh, the problem may be solved by the
 combination of instructions LLA 00, LID|LIW offs, ADD,
 LSW0.

Interpreter:
 Push(Core[L+Next()])

LGW
Load Global Word

Operation Code: 1 byte 21h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Evaluates EA as a sum of the G_register and the immediate
 operand. Loads a word from EA memory location and pushes
 it into the stack. PC increments by 2. When offset is
 greater than 0FFh, the problem may be solved by
 combination of instructions LGA 00, LID|LIW offs, ADD,
 LSW0.

Interpreter:
 Push(Core[G+Next()])

LEW
Load External Word

Operation Code: 1 byte 22h
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes
Action:
 The first immediate operand (byte following the
 instruction code) is the module number (M) and next one
 is the word offset (N). Loads the memory word at the
 address G_register-M-1. It is the pointer to module
 global area table (the so-called DFT), and after
 dereferencing (see Note for LEA) it (EA) points to the
 global area of the module M. Adds N to EA, loads the word
 from memory addressed by EA and pushes it into the stack.
 PC increments by 3.

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 34 (c) KRONOS

Interpreter:
 i:=G-Next()-1; adr:=Core[Core[i]]; (* external G *)
 Push(Core[adr+Next()])

LSW 23h
Load Stack addressed Word

Operation Code: 1 byte 23h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Evaluates EA as a sum of contents of top of the stack and
 the immediate operand (byte following the instruction
 code). Pops the top of the stack and pushes a word loaded
 from EA memory location into the stack. PC increments by
 2.
Interpreter:
 Push(Core[Pop()+Next()])

LLW4..LLW0F
Load Local Word

Operation Code: 4 bits 2Xh
Immediate Operands: 4 bits 04h..0Fh
Instruction Length: 1 byte
Action:
 Evaluates EA as a sum of the L_register and the immediate
 4 bit operand (the value of the least significant 4 bits
 of instruction code). Loads a word from EA memory
 location and pushes it into the stack. PC increments by
 1.

Note:
 The first 4 words of the local area are used for
 call/return information, and can not be used for local
 variables.

Interpreter:
 Push(Core[L+IR MOD 10h])

SLW
Store Local Word

Operation Code: 1 byte 30h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Evaluates EA as a sum of the L_register and the immediate
 byte operand. Pops a word from the stack and stores it at
 EA memory location. PC increments by 2.

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 35 (c) KRONOS

Interpreter:
 Core[L+Next()]:=Pop()

SGW 31h
Store Global Word

Operation Code: 1 byte 31h
Immediate Operands: 1 byte 00h..0FFh
Instruction Length: 2 bytes
Action:
 Evaluates EA as a sum of G_register and the immediate
 byte operand. Pops a word from the stack and stores it at
 EA memory location. PC increments by 2.

Interpreter:
 Core[G+Next()]:=Pop()

SEW
Store External Word

Operation Code: 1 byte 32h
Immediate Operands: 2 bytes 00h..0FFh
Instruction Length: 3 bytes
Action:
 Similar to LEW, but store the popped word in memory.

Interpreter:
 i:=G-Next()-1; adr:=Core[Core[i]]; (* external G *)
 Core[adr+Next()]:=Pop()

SSW
Store Stack addressed Word

Operation Code: 1 byte
Immediate Operands: 1 byte
Instruction Length: 2 bytes
Action:
 Pops the value from the stack. Evaluates EA as a sum of
 the address popped from the stack and the immediate
 operand (byte following the instruction code). Stores the
 value at EA memory location. PC increments by 2.

Interpreter:
 i:=Pop(); Core[Pop()+Next()]:=i

SLW4..SLW0F
Store Local Word

Operation Code: 4 bits 3Xh

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 36 (c) KRONOS

Immediate Operands: 4 bits 04h..0Fh
Instruction Length: 1 byte
Action:
 Evaluates EA as a sum of the L_register and the immediate
 4 bit operand (the value of the least significant 4 bits
 of the instruction code). Stores the word popped from the
 stack at EA memory location. PC increments by 1.

Interpreter:
 Core[L+IR MOD 10h]:=Pop()

LXB
Load indeXed Byte

Operation Code: 1 byte 40h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the index (the upper one) and the base address of
 the byte array from the stack. Loads addressed by
 base+index byte from memory, and pushes it into the stack
 as 32 bit word extending by leading zeros. PC increments
 by 1.

Interpreter:
 i:=Pop(); Push(ByteCore[Pop()*4+i]);

LXW
Load indeXed Word

Operation Code: 1 byte 41h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the index (the upper one) and the base address of
 the word array from the stack. Loads addressed by
 base+index word from memory, and pushes it into the
 stack. PC increments by 1.

Interpreter:
 i:=Pop(); Push(Core[Pop()+i])

LGW2..LGW0F
Load Global Word

Operation Code: 4 bits 4*h
Immediate Operands: 4 bits 02h..0Fh
Instruction Length: 1 byte
Action:
 Evaluates EA as a sum of the G_register and the immediate

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 37 (c) KRONOS

 4 bit operand (the value of the least significant 4 bits
 of the instruction code). Loads a word from EA memory
 location and pushes it into the stack. PC increments by
 1.

Note:
 The first 2 words of the global area of module are used
 for pointers to code and constant segments, and can not
 be used for global variables.

Interpreter:
 Push(Core[G+IR MOD 10h])

SXB
Store indeXed Byte

Operation Code: 1 byte 50h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the value (the upper one) from the stack and
 truncate it to the least significant byte. Then pops the
 index and the base address of the byte array from the
 stack. Store the value at memory location addressed by
 base+index byte. PC increments by 1.

Interpreter:
 j:=Pop(); i:=Pop(); ByteCore[Pop()*4+i]:=j;

SXW
Store indeXed Word

Operation Code: 1 byte 51h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the value (the upper one) from the stack. Then pops
 the index and the base address of the word array from the
 stack. Store the value at memory location addressed by
 base+index word. PC increments by 1.

Interpreter:
 j:=Pop(); i:=Pop(); Core[Pop()+i]:=j

SGW2..SGW0F
Store Global Word

Operation Code: 4 bits 5*h
Immediate Operands: 4 bits 02h..0Fh
Instruction Length: 1 byte

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 38 (c) KRONOS

Action:
 Evaluates EA as а sum of the G_register and the immediate
 4 bit operand (the value of the least significant 4 bits
 of the instruction code). Stores word popped from the
 stack at EA memory location. PC increments by 1.

Interpreter:
 Core[G+IR MOD 10h]:=Pop()

LSW0..LSW0F
Load Stack addressed Word

Operation Code: 4 bits 6*h
Immediate Operands: 4 bits 00h..0Fh
Instruction Length: 1 byte
Action:
 Evaluates EA as a sum of popped from the stack address
 and the immediate 4 bit operand (the value of the least
 significant 4 bits of the instruction code). Loads the
 word from EA memory location and pushes it into the
 stack. PC increments by 1.

Interpreter:
 Push(Core[Pop()+IR MOD 10h])

SSW0..SSW0F
Store Stack addressed Word

Operation Code: 4 bits 7*h
Immediate Operands: 4 bits 00h..0Fh
Instruction Length: 1 byte
Action:
 Pops the value from the stack. Evaluates EA as a sum of
 popped from the stack address and the immediate 4 bit
 operand (the value of the least significant 4 bits of the
 instruction code). Stores the value at EA memory
 location. PC increments by 1.

Interpreter:
 i:=Pop(); Core[Pop()+IR MOD 10h]:=i

QUIT
stop processor

Operation Code: 1 byte 81h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. If bit 2 in the M_register (Mask) ON
 then TRAP(2), otherwise stops processor. If console

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 39 (c) KRONOS

 microprogram is implemented then control transfers to it.

Note:
 In the RISC model of Kronos the other trap subsystem will
 be implemented and QUIT will be a privileged instruction.

Interpreter:
 ConsolMicroProgram

GETM
GET Mask

Operation Code: 1 byte 82h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Loads M_register and pushes it into the stack. PC
 increments by 1.

Note:
 In the RISC model of Kronos the other trap subsystem will
 be implemented. Actions of GETM & SETM will be changed
 and they will be privileged instructions.

Interpreter:
 Push(M)

SETM
SET Mask

Operation Code: 1 byte 83h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. If this is the first change of
 M_register in this procedure (30-th bit is OFF in the
 local word 02h) then the current contents of M_register
 is saved in the local word 03h and 30-th bit is set in
 the local word 02h. (Instruction RTN will restore the old
 mask after return.) A new mask value is popped from the
 stack and put into M_register.

Interpreter:
 IF NOT (ChangeMaskBit IN BITSET(Core[L+2])) THEN
 (* Mask is changed first time *)
 Core[L+2]:=WORD(BITSET(Core[L+2])+{ChangeMaskBit});
 Core[L+3]:=WORD(M)
 END; M:=BITSET(Pop);

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 40 (c) KRONOS

TRAP
interrupt simulation

Operation Code: 1 byte 84h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops the 32 bit trap number from the
 stack and raises trap with this number if it is enabled.

Interpreter:
 TRAP(Pop())

TRA
TRAnsfer control between processes

Operation Code: 1 byte 85h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1.
 The whole contents of the process is determined by the
 whole contents of the processor: registers, expression
 the stack, and the state of the process memory (P-stack
 is the stack for procedure calls). The whole contents of
 the processor is saved at P-stack and into the process
 descriptor (see "Kronos Interpreter"). The address of a
 new pointer of the process descriptor pops from the
 expression the stack, then old pointer to the process
 descriptor (P_register of the processor) is saved at the
 next popped address, and then P_register is changed by
 the value loaded from memory at new process descriptor
 pointer location. After that all the registers are
 restored from the new process descriptor, and the
 expression stack is restored from new P-stack, and
 control transfers to the current instruction of a new
 process.

Interpreter:
 i:=Pop(); Transfer(Pop(),i)

TR
Test & Reset

Operation Code: 1 byte 86h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops the EA from the stack. LOCKs
 memory to the processor bus. Loads the value from the
 memory location EA and writes 0 to memory. Pushes the
 value into the stack. UNLOCKs memory to the processor

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 41 (c) KRONOS

 bus. May be used for an exclusive access to the data from
 several processors.

Interpreter:
 i:=Pop(); Push(Core[i]); Core[i]:=0

IDLE
 IDLE process
Operation Code: 1 byte 87h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC is not changed. Processor waits for the interrupt not
 Busying the bus. The process wich executes this
 Instruction will be never continued. After the
 interrupt service and continued it it will execute IDLE
 again.

Interpreter:
 DEC(PC); REPEAT (* not busy the bus *) UNTIL Ipt

ADD
integer ADDition

Operation Code: 1 byte 88h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two words from the stack, adds
 them and pushes the result into the stack. If integer
 overflow happens and 31-t bit in the M_register is ON,
 raises trap 41h, elsif it is OFF, puts 41h in 6-th word
 of the process descriptor. The result after integer
 overflow is undefined. It may not be the module 2**32 of
 addition!

Note:
 All instructions of integer arithmetics have such
 conventions about interrupt raising and result after
 overflow.

Interpreter:
 Push(Pop()+Pop())

SUB
integer SUBtraction

Operation Code: 1 byte 89h
Immediate Operands: none
Instruction Length: 1 byte

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 42 (c) KRONOS

Action:
 PC increments by 1. Pops two words from the stack,
 substracts the upper one from the lower one and pushes
 the result into the stack (see, also, ADD).
Interpreter:
 i:=Pop(); Push(Pop()-i);

MUL
integer MULtiplication
Operation Code: 1 byte 8Ah
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two words from the stack,
 multiplies them and pushes the result into the stack
 (see, also, ADD).

Interpreter:
 Push(Pop()*Pop())

DIV
integer DIVision

Operation Code: 1 byte 8Bh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two words from the stack,
 divides the lower one by the upper one and pushes the
 result into the stack (see also ADD).

Interpreter:
 i:=Pop(); Push(Pop() DIV i)

SHL
integer SHift Left

Operation Code: 1 byte 8Ch
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two words from the stack and
 shifts the lower one arithmetically left by the upper one
 and pushes the result into the stack (see also ADD).
 SHL(x,n) is semantically equivalent to MULT(x,2**n) and
 so the rules for interrupt raising are the same.

Interpreter:
 i:=Pop() MOD 20h; Push(SHL(Pop(),i))

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 43 (c) KRONOS

SHR
integer SHift Right

Operation Code: 1 byte 8Dh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two words from the stack and
 shifts the lower one arithmeticaly right by the upper one
 and pushes the result into the stack (see also ADD).
 SHR(x,n) is semantically equivalent to DIV(x,2**n) and so
 the rules for interrupt raising are the same.

Note:
 SHR(-1,1) = -1 DIV 2 = 0 !!!
Interpreter:
 i:=Pop() MOD 20h; Push(SHR(Pop(),i))

ROL
word ROate Left

Operation Code: 1 byte 8Eh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops the shift count and the shifting
 value from the stack. Rotates left the value until
 count=0 and then pushes the result into the stack.
 Overflow never happens. 31 bit goes directly to 0 bit.
Interpreter:
 i:=Pop() MOD 20h; Push(Pop()<<i)

ROR
word ROate Right

Operation Code: 1 byte 8Fh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops the shift count and the shifting
 value from the stack. Rotates right the value until
 count=0 and then pushes the result into the stack.
 Overflow never happens. 0 bit goes directly to 31 bit.
Interpreter:
 i:=Pop() MOD 20h; Push(Pop()>>i)

IO0..IO7
Input-Output

Operation Code: 1 byte 90h..97h

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 44 (c) KRONOS

Immediate Operands: ?
Instruction Length: ?
Action:
 Instruction for I/O bus communications. Individual for
 each model of processor and I/O bus.

Interpreter:
 CASE cpu OF
 |Kronos2_2: ioP2_2
 |Kronos2_5: ioP2_5
 |Kronos2_6: ioP2_6
 ELSE ASSERT(FALSE);
 END

FADD
Float ADDition

Operation Code: 1 byte 98h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two 32 bits words from the
 stack, adds them as 32-bits float numbers and pushes the
 result into the stack. If real overflow/underflow
 happened and 31 bit in the M_register is ON, raise trap
 42h/43h, elsif it is OFF puts 42h/43h in word 6 of
 process descriptor. The result after the real overflow is
 undefined, after underflow 0.0e+00.
Note:
 Overflow/Underflow discipline is common for all FLOAT
 instructions. Current models of processors use 32-bit DEC
 (tm) real numbers representation.

Interpreter:
 Push(REAL(Pop())+REAL(Pop()))

FSUB
Float SUBtraction

Operation Code: 1 byte 99h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two 32 bits words from the
 stack, substracts the upper one from the lower one as
 32-bits float numbers and pushes the result into the
 stack.

Interpreter:
 X:=REAL(Pop()); Push(REAL(Pop())-X)

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 45 (c) KRONOS

FMUL
Float MULtiplication

Operation Code: 1 byte 9Ah
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two 32 bits words from the
 stack, multiplies them as 32-bits float numbers and
 pushes the result into the stack.

Interpreter:
 Push(REAL(Pop())*REAL(Pop()))

FDIV
Float DIVision

Operation Code: 1 byte 9Bh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1. Pops two 32 bits words from the
 stack, divides the lower one by the upper one as 32-bits
 float numbers and pushes the result into the stack.
Interpreter:
 X:=REAL(Pop()); Push(REAL(Pop())/X)

FCMP
Float CoMPare

Operation Code: 1 byte 9Ch
Immediate Operands: none
Instruction Length: 1 byte
Action:
 PC increments by 1.
 Pops Rigth and Left real values from the stack. Compares
 them as a real numbers and pushes the results. At the
 place of the greatest value is 1, at other is 0. If they
 equals pushes 0,0 pair.

 _____ _____ _____ _____
 | X | FCMP | 0 | | 1 | | 0 |
 | Y | ------> | 1 | | 0 | | 0 |

 X < Y X > Y X = Y

 Pair of instructions:
 FCMP EQU FCMP NEQ
 FCMP LSS FCMP GTR
 FCMP LEQ FCMP GEQ

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 46 (c) KRONOS

 forms the full system of real comparisons.
Interpreter:
 X:=REAL(Pop()); Y:=REAL(Pop());
 IF X<Y THEN Push(1); Push(0)
 ELSIF X>Y THEN Push(0); Push(1)
 ELSE Push(0); Push(0) END

FABS
Float ABSolute

Operation Code: 1 byte 9Dh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops a real number from the stack and pushes its absolute
 value into the stack. PC increments by 1.
Interpreter:
 X:=REAL(Pop());
 IF X<0.0 THEN Push(-X) ELSE Push(X) END

FNEG
Float NEGative

Operation Code: 1 byte 9Eh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops a real number from the stack, negates it and pushes
 it back into the stack. PC increments by 1.
Interpreter:
 Push(-REAL(Pop()))

FFCT
Float FunCTion

Operation Code: 1 byte 9Fh
Immediate Operands: 1 byte
Instruction Length: 2 bytes
Action:
 Case of the next byte following the command:

 next = 0

 pops an integer number from the stack, transfers it into
 the appropriate real number and pushes it back into the
 the stack. PC increments by 1.

 next = 1

 pops a real number from the stack, truncates it into the

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 47 (c) KRONOS

 appropriate integer number and pushes it back into the
 the stack. PC increments by 1. (Integer overflow may
 happen).
Interpreter:
 i:=Next();
 IF i=0 THEN Push(FLOAT(INTEGER(Pop())))
 ELSIF i=1 THEN Push.(TRUNC(REAL(Pop())))
 ELSE DEC(PC); TRAP(7h) END;

LSS
integer LeSS

Operation Code: 1 byte 0A0h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word. Compares
 them and if the Lower integer less than the Upper one
 pushes 1 otherwise 0. PC increments by 1. Overflow never
 happens.
Interpreter:
 i:=Pop(); Push(Pop()<i)

LEQ
integer Less or EQual

Operation Code: 1 byte 0A1h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word. Compares
 them and if the Lower integer <= the Upper one pushes 1
 otherwise 0. PC increments by 1. Overflow never happens.

Interpreter:
 i:=Pop(); Push(Pop()<=i)

GTR
integer GreaTeR

Operation Code: 1 byte 0A2h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word. Compares
 them and if the Lower integer > the Upper one pushes 1
 otherwise 0. PC increments by 1. Overflow never happens.

Interpreter:
 i:=Pop(); Push(Pop()>i)

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 48 (c) KRONOS

GEQ
integer Greater or EQual

Operation Code: 1 byte 0A3h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word. Compares
 them and if the Lower integer >= the Upper one pushes 1
 otherwise 0. PC increments by 1. Overflow never happens.

Interpreter:
 i:=Pop(); Push(Pop()>=i)

EQU
integer EQUal

Operation Code: 1 byte 0A4h
Immediate Operands: none
Instruction Length: 1 byte
Action:

 Pops the Upper word and then the Lower word. Compares
 them and if the Lower word = the Upper word pushes 1
 otherwise 0. PC increments by 1. Overflow never happens.

Interpreter:
 Push(Pop()=Pop())

NEQ
integer NOt eQual

Operation Code: 1 byte 0A5h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word. Compares
 them and if the Lower word <> the Upper word pushes 1
 otherwise 0. PC increments by 1. Overflow never happens.

Interpreter:
 Push(Pop()#Pop())

ABS
integer ABSolute

Operation Code: 1 byte 0A6h
Immediate Operands: none
Instruction Length: 1 byte
Action:

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 49 (c) KRONOS

 Pops the integer value and pushes its absolute value into
 the stack. PC increments by 1. Overflow happens for
 -MIN(INTEGER).

Interpreter:
 Push(ABS(Pop()))

NEG
integer NEGative

Operation Code: 1 byte 0A7h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the integer value, negates it and pushes its
 absolute value into the stack. PC increments by 1.
 Overflow happens for -MIN(INTEGER).

Interpreter:
 Push(-Pop())

OR
logical bit per bit OR

Operation Code: 1 byte 0A8h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops 2 words from the stack, executes OR for all 32 bits
 of these words and pushes the result into the stack. PC
 increments by 1.

Interpreter:
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w+v)

AND
logical bit per bit AND

Operation Code: 1 byte 0A9h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops 2 words from the stack, executes AND for all 32 bits
 of these words and pushes the result into the stack. PC
 increments by 1.

Interpreter:
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w*v)

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 50 (c) KRONOS

XOR
logical bit per bit XOR

Operation Code: 1 byte 0AAh
Immediate Operands: none
Instruction Length: 1 byte
Action:

 Pops 2 words form the stack, executes XOR for all 32 bits
 of these words and pushes the result into the stack. PC
 increments by 1.

Interpreter:
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w/v)

BIC
logical bit per bit BIt Clear

Operation Code: 1 byte 0ABh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper word and then the Lower word from the
 stack. Clears in Lower one all bits which are ON in the
 Upper word and pushes the result into the stack. PC
 increments by 1.

Interpreter:
 v:=BITSET(Pop()); w:=BITSET(Pop()); Push(w-v)

IN
IN bitset

Operation Code: 1 byte 0ACh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Scale (S) word and then the element (N) from the
 stack. If N>=0 and N<=31 and bit number N set ON in S,
 then pushes 1, otherwise 0 into the stack. PC increments
 by 1.

Interpreter:
 v:=BITSET(Pop()); Push(Pop() IN v)

BIT
set BIT

Operation Code: 1 byte 0ADh
Immediate Operands: none

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 51 (c) KRONOS

Instruction Length: 1 byte
Action:
 Pops the bit number (N) and pushes the word, in wich all
 bits are zeros except bit with number N, into the stack.
 If N<0 or N>31 then trap 4Ah is raised. PC increments by
 1.

Interpreter:
 i:=Pop();
 IF (i<0) OR (i>=20h) THEN TRAP(4Ah)
 ELSE w:={}; INCL(w,i); Push(w) END

NOT
boolean NOT (not bit per bit!)

Operation Code: 1 byte 0AEh
Immediate Operands: none
Instruction Length: 1 byte
Action:

 If the popped value equals 0, pushes 1, otherwise 0 into
 the the stack. PC increments by 1.
Interpreter:
 Push(Pop()=0)

MOD
integer MODule

Operation Code: 1 byte 0AFh
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the Upper and then the Lower operands. Pushes the
 integer remainder from the Lower by the Upper division.
 Integer overflow may happen.

Interpreter:
 i:=Pop(); Push(Pop() MOD i)

DECS
DECrement S_register

Operation Code: 1 byte 0B0h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Decrements the S_register by the value popped from the
 stack. PC increments by 1.

Interpreter:
 DEC(S,Pop())

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 52 (c) KRONOS

DROP
DROP

Operation Code: 1 byte 0B1h
Immediate Operands: none
Длина команды: 1 byte
Action:
 Ignores the popped value. PC increments by 1.

Interpreter:
 i:=Pop();

LODF
reLOaD the expression stack after Function return

Operation Code: 1 byte 0B2h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the value from the stack. Reload the stack by the
 contents saved before at the P-stack. Pushes the value
 over the reloaded stack. PC increments by 1. This
 instruction is used for reloading the saved stack after
 function calls.

Interpreter:
 i:=Pop(); RestoreExpStack; Push(i)

STORE
STORE the expression stack

Operation Code: 1 byte 0B3h
Immediate Operands: none
Instruction Length: 1 byte
Action:
 If it is possible (the free space between S and H
 registers presents), saves the expression stack,
 incrementing S_register. Puts the depth of the saved
 expression stack at the top of the P-stack (pointed by
 S_register-1). PC increments by 1. If the free space for
 saving is absent, trap 40h is raised.

Interpreter:
 IF S+ESdepth+1>H THEN DEC(PC); TRAP(40h)
 ELSE SaveExpStack
 END

STOFV
STORE the expression stack with Formal function value at the top

Operation Code: 1 byte 0B4h

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 53 (c) KRONOS

Immediate Operands: none
Instruction Length: 1 byte
Action:
 Pops the value from the stack after the stack saving in
 the same manner as in the instruction STORE. After that
 the popped at the very begining value stores (see STOT)
 at the top of the P-stack. PC increments by 1. Traps 40h
 may be raised. This instruction is useful for the stack
 saving when the top word is the formal function which is
 called by the CF instruction (see).

Interpreter:
 IF S+ESdepth+2>H THEN DEC(PC); TRAP(40h)
 ELSE i:=Pop(); SaveExpStack; Core[S]:=i; INC(S) END

COPT
COPy Top of expression the stack

Operation Code: 1 byte 0B5h
Immediate Operands: none
Instruction Length: 1 byte
Action:

 Pushes twice the popped value. PC increments by 1.

Interpreter:
 i:=Pop(); Push(i); Push(i)

CPCOP
Character array Parameter COPy

Operation Code: 1 byte 0B6h
Immediate Operands: 1 byte
Instruction Length: 2 bytes
Action:
 Loads the immediate operand N (the next byte followed by
 the instruction code). A value of the S_register is
 stored in the local word N (at memory location
 L_register+N). Popped High of array is transformed to a
 word size. Then array is copied from address popped from
 the stack into the memory pointed by the S_register, with
 incrementing the S_register. PC increments by 2. Trap 40h
 may happen.

Note:
 In the RISC Kronos processor this instruction will be
 discarded.

Interpreter:
 i:=Pop(); (* High *) sz:=(i+4) DIV 4;
 IF S+sz>H THEN Push(i); DEC(PC); TRAP(40h)

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 54 (c) KRONOS

 ELSE Core[L+Next()]:=S; adr:=Pop();
 WHILE sz>0 DO Core[S]:=Core[adr]; INC(S); INC(adr) END
 END

PCOP
structure Parameter allocate and COPy

Operation Code: 1 byte 0B7h
Immediate Operands: 1 byte
Instruction Length: 2 bytes
Action:

 Loads the immediate operand N (the next byte followed by
 the instruction code). A value of the S_register is
 stored in the local word N (at memory location
 L_register+N). Loads High of array from the stack and
 increments it by 1 to transform into size. Then array is
 copied from popped from the stack address into the memory
 pointed by the S_register, with incrementing the
 S_register. PC increments by 2. Trap 40h may happen.
Note:
 In RISC Kronos processor this instruction will be
 discarded.

Interpreter:
 i:=Pop(); (* High *) sz:=i+1;
 IF S+sz>H THEN Push(i); DEC(PC); TRAP(40h)
 ELSE Core[L+Next()]:=S; adr:=Pop();
 WHILE sz>0 DO Core[S]:=Core[adr]; INC(S); INC(adr) END
 END

FOR1
enter FOR statement

Operation Code: 1 byte 0B8h
Immediate Operands: 3 bytes
Instruction Length: 4 байта
Action:
 Pops High and Low bounds of FOR loop from the stack, then
 pops the cycle parameter address. Loads the sign of step
 of cycle from the first immediate operand (byte following
 the instruction code). Loads Offset of the first
 instruction out of loop from the second immediate operand
 (2 bytes). PC increments by 4. Stores Low bound of the
 cycle in parameter. If conditions of the loop are not
 satisfied exits out of loop with incrementing the PC by
 Offset, else enters the loop (goes to the next
 instruction). Address of cycle parameter and High bounds
 of the loop stores at the P-stack. Trap 40h may happen.

Note:

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 55 (c) KRONOS

 In the RISC Kronos processor this instruction will be
 discarded.

Interpreter:
 IF S+2>H THEN DEC(PC); TRAP(40h)
 ELSE sz:=Next(); (* =0 up; #0 down *)
 hi:=Pop(); low:=Pop(); adr:=Pop(); k:=Next2()+PC;
 IF ((sz=0) & (low<=hi)) OR ((sz#0) & (low>=hi)) THEN
 Core[adr]:=low;
 Core[S]:=adr; INC(S); Core[S]:=hi; INC(S);
 ELSE (* цикл не исполняется не разу *) PC:=k
 END
 END

FOR2
end of FOR statement

Operation Code: 1 byte 0B9h
Immediate Operands: 3 bytes
Instruction Length: 4 байта
Action:
 Loads the step of cycle from the first immediate operand
 (byte following the instruction code) and decrements the
 step by 128 to restrict it in the range -128..+127. Loads
 the Offset to the first instruction of the cycle (2
 bytes) from the second immediate operand. PC increments
 by 4. Loads the High bound and cycle parameter address
 from the P-stack. Adds the step to the cycle parameter.
 If the cycle condition are satisfied, jumps to the first
 instruction of the loop with decrementing the PC by
 Offset, else drops High and address from the P-stack with
 decrementing the S_register by 2 and exits out of loop
 (goes to the next instruction). Note: FOR1 executes only
 at the first iteration of loop.

Note:
 In the RISC Kronos processor this instruction will be
 discarded.

Interpreter:
 hi:=Core[S-1];
 adr:=Core[S-2];
 sz:=Next();
 IF sz>7Fh THEN
 sz:=7Fh-sz (* шаг [-128..127] *)
 END;
 k:=-Next2()+PC;
 i:=Core[adr]+sz;
 IF ((sz>=0) & (i>hi)) OR ((sz<0) & (i<hi)) THEN
 DEC(S,2); (* terminate *)
 ELSE Core[adr]:=i; PC:=k (* continue *)
 END

ARCHITECTURE KRONOS INSTRUCTIONS

02-Dec-1988 56 (c) KRONOS

ENTC
ENTer Case statement

Operation Code: 1 byte 0BAh
Immediate Operands: 2 bytes 00h..0FFFFh
Instruction Length: 3 bytes + case table size
Action:
 Selects the needful alternative jump from the case table.
 Trap 40h may happen.

Note:
 In the RISC Kronos processor this instruction will be
 discarded.

 Stacks before ENTC

 ENTC xxxx ---- (*1*) E-stack P-stack
 ---> Alt 0 |
 | ... XIT | | | | |
 -+---> Alt 1 | (*8*) | | | | ___
 | | ... XIT | | 1 | | |<--| S |
 | | | ~~~ | | ~~~
 | | ... |
 | | | Stacks after ENTC
 -+-+---> Alt n |
| | | ... XIT | | | | | ___
| | | -> Alt ELSE | | | | |<--| S |
| | | | ... XIT ----------+--------- | | | PC' | ~~~
					~~~	
			<Lo><Hi>  <-------  (*2*)			
			(*3,4*)			
		-  <ELSE offset>       (*5*)				
	----  <Alt0 offset>					
------  <Alt1 offset>      (*6*)						
...........						
 --------  <AltN offset>             | 
                                     | 
           <Continue code>  <-- PC' -- 
 
Interpreter: 
     IF S+1>H THEN DEC(PC); TRAP(40h) 
     ELSE PC:=Next2()+PC; (* jump to case table *) 
       k:=Pop(); low:=Next2(); hi:=Next2(); 
       Core[S]:=PC + 2*(hi-low) + 4; INC(S);(*PC for exit*) 
       IF (k>=low) & (k<=hi) THEN 
         PC:=PC+2*(k-low+1) (* jump into case table *) 
       END; 
       PC:=-Next2()+PC (* jump back to variant's code *) 
     END 
 
 
 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 57 (c) KRONOS
 

XIT 
eXIT from case 
 
Operation Code:                 1 byte          0BBh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Loads  the  PC  value  from  the  P-stack  and decrements 
     S_register. Jumps to the specified PC. 
 
Note: 
     In  the  RISC  Kronos  processor this instruction will be 
     discarded. 
 
Interpreter: 
     DEC(S); PC:=Core[S] 
 
 
ADDPC 
ENTer control Structure 
 
Operation Code:                 1 byte          0BCh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Adds  value  from  the PC_register (after the instruction 
     code fetching) to the top of the stack. 
 
Interpreter: 
     Push(PC+Pop()); 
 
 
JUMP 
ENTer control Structure 
 
Operation Code:                 1 byte          0BDh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Jumps to the instruction wich PC has been popped from the 
     top of the stack. 
 
Interpreter: 
     PC:=Pop(); 
 
 
ORJP 
short circuit OR JumP 
 
Operation Code:                 1 byte          0BEh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 58 (c) KRONOS
 

     Implements the MacCarthy disjunction (conditional OR). If 
     the  value  popped  from  the  stack is not equal to zero 
     (TRUE)  pushes  1  into the stack and jumps to the end of 
     condition   (the   offset  taken  from  the  next  byte), 
     otherwise goes to the next instruction. 
 
Interpreter: 
     IF Pop()#0 THEN 
       Push(1); PC:=Next()+PC 
     ELSE 
       INC(PC) 
     END 
 
 
ANDJP 
short circuit AND JumP 
 
Operation Code:                 1 byte          0BFh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Implements  the  MacCarthy conjunction (conditional AND). 
     If  the  value  popped  from  the  stack is equal to zero 
     (FALSE)  pushes  0 into the stack and jumps to the end of 
     condition  (offset  taken  from the next byte), otherwise 
     goes to the next instruction. 
 
Interpreter: 
     IF Pop()=0 THEN 
       Push(0); PC:=Next()+PC 
     ELSE 
       INC(PC) 
     END 
 
 
MOVE 
MOVE block 
 
Operation Code:                 1 byte          0C0h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  size  (in  words),  source and destinator addresses 
     from  the  stack. Moves the sequence of words (in address 
     increasing direction) from source to destinator address. 
 
Note: 
     May be used to filling area of memory by pattern. 
 
Interpreter: 
     sz:=Pop(); 
     i:=Pop(); j:=Pop(); 
     WHILE sz>0 DO 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 59 (c) KRONOS
 

       Core[j]:=Core[i]; INC(i); INC(j); DEC(sz) 
     END 
 
 
CHKNIL 
ReaD String 
 
Operation Code:                 1 byte          0C1h 
Immediate Operands:             none 
Instruction Length:             1 byte 
Action: 
     Checks  the  address  on  the  top of the stack. If it is 
     equal to NIL raises the interrupt. 
Interpreter: 
     adr:=Pop(); Push(adr); 
     IF adr=NIL THEN TRAP(3) END; 
 
 
LSTA 
Load STring Address 
 
Operation Code:                 1 byte          0C2h 
Immediate Operands:             2 bytes 
Instruction Length:             3 bytes 
Action: 
     Loads  the immediate 2 byte operand and adds its value to 
     the  value  of  Global Word 1 (string pointer) and pushes 
     sum into the stack. 
 
Note: 
     Will be discarded in the RISC Kronos architecture. 
 
Interpreter: 
     Push(Core[G+1]+Next2()); 
 
 
COMP 
COMPare strings 
 
Operation Code:                 1 byte          0C3h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops from the stack the base addresses of two strings and 
     compares them byte after byte until they are not equal or 
     one  of  them  is  zero byte (string terminator). In both 
     cases  pushes the values of two last bytes into the stack 
     in  the  same order as the source strings was. After this 
     instruction  any compare instruction (EQU, NEQ, LSS, GTR, 
     LEQ, GEQ) may be applied for the string comparison. 
 
Interpreter: 
     i:=Pop()*4; j:=Pop()*4; 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 60 (c) KRONOS
 

     REPEAT a:=CHAR(ByteCore[i]); b:=CHAR(ByteCore[j]); 
     INC(i); INC(j) 
     UNTIL (a=0c) OR (b=0c) OR (a#b); Push(a); Push(b) 
 
 
GB 
Get procedure Base n level down 
 
Operation Code:                 1 byte          0C4h 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Takes  the  number  of  levels  N from the byte immediate 
     operand.  Goes  through  the  procedure  chain  of  saved 
     L_registers  until  the depth N will be extracted. Pushes 
     the value on the N'th L_register into the stack. 
 
Note: 
     Will be discarded in the RISC Kronos architecture. 
 
Interpreter: 
     i:=L; n:=Next(); 
     WHILE n>0 DO i:=Core[i]; DEC(n) END; 
     Push(i) 
 
 
GB1 
Get procedure Base 1 level down 
 
Operation Code:                 1 byte          0C5h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     The short form of the instruction GB 01. 
 
Note: 
     Will be discarded in the RISC Kronos architecture. 
 
Interpreter: 
     Push(Core[L]) 
 
 
CHK 
range bounds CHecK 
 
Operation Code:                 1 byte          0C6h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  high  and  low  bounds and index from the stack and 
     checks  whether the index lies in the range low..high. If 
     it  is  out of the range raises the interrupt 4Ah else no 
     operation.  In  both cases pushes the index backward into 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 61 (c) KRONOS
 

     the stack. 
 
Interpreter: 
     hi:=Pop(); low:=Pop(); i:=Pop(); Push(i); 
     IF (i<low) OR (i>hi) THEN 
       Push(low); Push(hi); TRAP(4Ah) 
     END 
 
 
CHKZ 
array bounds CHecK (low=Zero) 
 
Operation Code:                 1 byte          0C7h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  high  bound  and  the index from the stack and 
     checks  wheter  index lies in range 0..high. If it is out 
     of  range  raises the interrupt 4Ah else no operation. In 
     both cases pushes the index backward into the stack. 
 
Interpreter: 
     hi:=Pop(); i:=Pop(); Push(i); 
     IF (i<0) OR (i>hi) THEN Push(hi); TRAP(4Ah) END 
 
 
ALLOC 
ALLOCate block 
 
Operation Code:                 1 byte          0C8h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the size of structure from the stack, takes a value 
     of  the S_register as the start address of the structure, 
     increments  the  S_register  by the size. Pushes the base 
     address  of allocated area into the stack. If incremented 
     S_register   greater   than  the  H_register  raises  the 
     interrupt 40h without memory allocation. 
 
Interpreter: 
     sz:=Pop(); 
     IF S+sz>H THEN 
       Push(sz); DEC(PC); TRAP(40h) 
     ELSE 
       Push(S); INC(S,sz) 
     END 
 
 
ENTR 
ENTeR procedure 
 
Operation Code:                 1 byte          0C9h 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 62 (c) KRONOS
 

Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Takes  the  next  byte  immediate  operand as a number of 
     necessary  local  variables  for  procedure execution and 
     allocates  a local area for them. It is equivalent to the 
     sequence  LIB  <n>  ALLOC  DROP. The 40h interrupt may be 
     raised. 
 
Interpreter: 
     sz:=Next(); 
     IF S+sz>H THEN 
       DEC(PC,2); TRAP(40h) 
     ELSE 
       INC(S,sz) 
     END 
 
 
RTN 
ReTurN from procedure 
 
Operation Code:                 1 byte          0CAh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Restores the previous value of the S_register (to release 
     memory  used  for procedure execution) from the procedure 
     links  area  (see the instruction CALL), the value of the 
     L_register  of  procedure, from wich this one was called, 
     the  value  of  the PC_register and, if the external call 
     was  performed  (ExternalBit  is  in saved PC_word of the 
     links   area),   restores   the   G_register   of  caller 
     procedure's module. 
     If  processor  mask  (M_register)  was changed during the 
     procedure  execution  then the old mask value is restored 
     from  the apropriate links area word. So no one procedure 
     may change M_register longer than its own execution. 
Note: 
     Restoring after mask change will be discarded in the RISC 
     Kronos architecture. 
 
Interpreter: 
     S:=L; 
     PC:=WORD(BITSET(Core[S+2])*{0..0Fh}); 
     L:=Core[S+1]; 
     IF ExternalBit IN BITSET(Core[S+2]) THEN 
       (* external called *) 
       G:=Core[S]; F:=CodePtr(Core[G]) 
     END; 
     IF ChangeMaskBit IN BITSET(Core[S+2]) THEN (* mask was 
changed *) 
       M:=BITSET(Core[S+3])*{0..10h} 
     END; 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 63 (c) KRONOS
 

NOP 
No OPeration 
 
Operation Code:                 1 byte          0CBh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     It is not too hard to understand this instruction. 
 
 
 
CX 
Call eXternal 
 
Operation Code:                 1 byte          0CCh 
Immediate Operands:             2 bytes 
Instruction Length:             3 bytes 
Action: 
     External Call. 
 
     If  there are less than 4 words between S and H registers 
     then  raises  the interrupt 40h. Takes the next immediate 
     byte  operand  as  a module number and the next immediate 
     byte  operand  as  a procedure number. After that a new 4 
     words  procedure  links area is constructed. In zero word 
     puts  the  current  value of the G_register, in the first 
     word  puts  the  current  value of the L_register, in the 
     second word puts the current value of the PC_register (16 
     bits)  combined  with  the  ExternalBit mark. After that, 
     using  module  number,  takes a new G_register from local 
     (by indirection through global) DFT. Dereferences the new 
     G_register  and  obtains  the  F_register, adds procedure 
     number  to  it  and  obtains  a  new  PC  value  from the 
     appropriate  word  of  procedure table. And then jumps to 
     select the instruction (the begin of called procedure). 
 
Note: 
     Extra  dereferencing  through  the  global  DFT  will  be 
     discarded in the RISC Kronos architecture. 
 
Interpreter: 
     IF S+4<=H THEN j:=Core[G-Next()-1]; (* big DFT *) 
       i:=Next(); Mark(G,TRUE); 
       G:=Core[j]; F:=CodePtr(Core[G]); PC:=GetPc(i); 
     ELSE DEC(PC); TRAP(40h) END 
 
 
CI 
Call procedure at Intermediate level 
 
Operation Code:                 1 byte          0CDh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 64 (c) KRONOS
 

Action: 
     Similar to CX but obtains PC using own F_register and own 
     module  procedure table. Stores in zero word of procedure 
     words  a  value  popped from the stack (we assume that it 
     may  be  pushed by GB <n> instruction). This value may be 
     used  by GB <n> LSW <x> or GB <n> ... SSW <x> to organize 
     the access to the intermediate level variables. 
 
Interpreter: 
     IF S+4<=H THEN 
       i:=Next(); Mark(Pop(),FALSE); PC:=GetPc(i); 
     ELSE 
       DEC(PC); TRAP(40h) 
     END 
 
 
CF 
Call Formal procedure 
 
Operation Code:                 1 byte          0CEh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Takes  a  procedure value from the top of the P-stack and 
     decrements   the   S_register   by   1.  Takes  the  most 
     significant  byte  of  the procedure value as a procedure 
     number  and  three  bytes  as  an address of a global DFT 
     entry,  where  the  G_register  of  called procedure host 
     module is lied. Then executes similary CX instruction. 
 
Note: 
     Extra  dereferencing  through  the  global  DFT  will  be 
     discarded in the RISC Kronos architecture. 
 
Interpreter: 
     IF S+3<=H THEN i:=Core[S-1]; DEC(S); Mark(G,TRUE); 
       k:=i DIV 1000000h; i:=i MOD 1000000h; 
       G:=Core[i]; F:=CodePtr(Core[G]); PC:=GetPc(k); 
     ELSE DEC(PC); TRAP(40h) END 
 
 
CL 
Call Local procedure 
 
Operation Code:                 1 byte          0CFh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Similar  CI  instruction  but  stores  the  value  of the 
     L_register  in  zero word of procedure links area. May be 
     used  to  call  the  procedures at the same lexicographic 
     level. 
 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 65 (c) KRONOS
 

Interpreter: 
     IF S+4<=H THEN 
       i:=Next(); Mark(L,FALSE); PC:=GetPc(i); 
     ELSE 
       DEC(PC); TRAP(40h) 
     END 
 
 
CL0..CL0E 
Call Local procedure 
 
Operation Code:                 4 bits         0D0h 
Immediate Operands:             4 bits         00h..0Fh 
Instruction Length:             1 byte 
Action: 
     Equivalent  to  CL instruction but extracts the procedure 
     number  from  four  the  least  significant  bits  of the 
     instruction code. 
 
Interpreter: 
     IF S+4<=H THEN Mark(L,FALSE); PC:=GetPc(IR MOD 10h); 
     ELSE DEC(PC); TRAP(40h) END 
 
 
INCL                            0E0h 
INCLude in set 
 
Operation Code:                 1 byte 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  bit number and the destinator address from the 
     stack. If the bit number outs of the range 0..31 then the 
     interrupt 4Ah is raised. Sets bit with appropriate number 
     in the destinator word. 
 
Interpreter: 
     i:=Pop(); 
     IF (i<0) OR (i>1Fh) THEN Push(i); DEC(PC); TRAP(4Ah) 
     ELSE j:=Pop(); w:=BITSET(Core[j]); INCL(w,i); 
       Core[j]:=CARDINAL(w) 
     END 
 
 
EXCL 
EXCLude from set 
 
Operation Code:                 1 byte          0E1h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  bit number and the destinator address from the 
     stack.  If  the  bit  number outs of the range 0..31 then 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 66 (c) KRONOS
 

     interrupt  4Ah  is  raised. Sets the bit with appropriate 
     number in the destinator word. 
 
Interpreter: 
     i:=Pop(); 
     IF (i<0) OR (i>1Fh) THEN Push(i); DEC(PC); TRAP(4Ah) 
     ELSE j:=Pop(); w:=BITSET(Core[j]); EXCL(w,i); 
       Core[j]:=CARDINAL(w) 
     END 
 
 
SLEQ                            0E2h 
bitSet Less or EQual 
 
Operation Code:                 1 byte 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  bitsets  Top and Under. If bitset Under is the 
     subset of Top then pushes 1 (TRUE) else 0 (FALSE). 
 
Note: 
     Will be discarded in the RISC Kronos architecture. 
 
Interpreter: 
     w:=BITSET(Pop()); v:=BITSET(Pop()); Push(v<=w) 
 
 
SGEQ 
bitSet Greater or EQual 
 
Operation Code:                 1 byte          0E3h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  bitsets  Top  and  Under. If bitset Top is the 
     subset of Under then pushes 1 (TRUE) else 0 (FALSE). 
Interpreter: 
     w:=BITSET(Pop()); v:=BITSET(Pop()); Push(v>=w) 
 
 
INC1 
INCrement by 1 
 
Operation Code:                 1 byte          0E4h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Increments  a  value  at  the  memory  location at popped 
     address by 1. 
 
Interpreter: 
     INC(Core[Pop()]) 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 67 (c) KRONOS
 

DEC1 
DECrement by 1 
 
Operation Code:                 1 byte          0E5h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Decrements  a  value  at  the  memory  location at popped 
     address by 1. 
 
Interpreter: 
     DEC(Core[Pop()]) 
 
 
INC 
INCrement 
 
Operation Code:                 1 byte          0E6h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  step from the stack. Increments a value at the 
     memory location at popped address by the step. 
 
Interpreter: 
     i:=Pop(); INC(Core[Pop()],i) 
 
 
DEC 
DECrement 
 
Operation Code:                 1 byte          0E7h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  a  step  from  the stack. Decrements a value at the 
     memory location at popped address by the step. 
 
Interpreter: 
     i:=Pop(); DEC(Core[Pop()],i) 
 
 
STOT 
STOre the Top at the procedure stack 
 
Operation Code:                 1 byte          0E8h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Stores  popped  from the stack value at memory located by 
     the  L_register. Increments the L_register by 1. If there 
     is  less  than  1  word  between S and H registers raises 
     interrupt 40h. 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 68 (c) KRONOS
 

Interpreter: 
     IF S+1>H THEN DEC(PC); TRAP(40h) 
     ELSE Core[S]:=Pop(); INC(S) 
     END 
 
 
 
LODT 
LOaD the Top of the procedure stack 
 
Operation Code:                 1 byte          0E9h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Decrements  the S-register by 1. Pushes value loaded from 
     located by S_register. 
 
Interpreter: 
 
     DEC(S); Push(Core[S]) 
 
 
LXA 
Load indeXed Address 
 
Operation Code:                 1 byte          0EAh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  a  size  and  an  index of an element and a base of 
     structure  array.  Multiplies  the size and the index and 
     adds to the base and pushes the result. 
 
Interpreter: 
     sz:=Pop(); i:=Pop(); adr:=Pop(); Push(adr+i*sz) 
 
 
LPC 
Load Procedure Constant 
 
Operation Code:                 1 byte          0EBh 
Immediate Operands:             2 bytes 
Instruction Length:             3 bytes 
Action: 
     Takes  a  module  number  from  the  next  immediate byte 
     operand  and the procedure number from the next immediate 
     byte  operand.  Takes  the word with offset equals to the 
     module number from the local DFT (the address of entry in 
     global  DFT)  and packs it in three the least significant 
     bytes  of the resulting procedure value. Procedure number 
     is  packed  in  the  most significant byte of the result. 
     Pushes the result into the stack. 
 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 69 (c) KRONOS
 

Interpreter: 
     i:=Next(); j:=Next(); Push(j*1000000h+Core[G-i-1]) 
 
     The  following  3  instructions deal with bit slices. Bit 
     address is the pair (address, bit offset). Bit offset can 
     be greater than 32. The slice may out of word bounds. 
 
BBU 
Bit Block Unpack 
 
Operation Code:                 1 byte          0ECh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  a  size  of a bit slice (1..32), a bit offset and a 
     base address from the stack. Forms bit slice of bits from 
     memory located by base address and bit offset, extends it 
     by leading zeros and pushes it into the stack. 
 
Interpreter: 
     sz:=Pop(); 
     IF (sz<1) OR (sz>32) THEN 
       Push(sz); DEC(PC); TRAP(4Ah) 
     END; 
     i:=Pop(); adr:=Pop(); 
     (* j:="sz bits from bit address adr*32+i" *) 
     Push(j); 
 
 
BBP 
Bit Block Pack 
 
Operation Code:                 1 byte          0EDh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  value, size of bit slice (sz), offset and base from 
     the  the  stack,  truncate  the least significant sz bits 
     from  value,  and  packs  it  at  memory  located by base 
     address and bit offset. 
 
Interpreter: 
     j:=Pop(); sz:=Pop(); 
     IF (sz<1) OR (sz>32) THEN 
       Push(sz); DEC(PC); TRAP(4Ah) 
     END; 
     i:=Pop(); adr:=Pop(); 
     (* "pack sz bits from j at bit address adr*32+i *) 
 
 
BBLT 
Bit BLock Transfer 
 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 70 (c) KRONOS
 

Operation Code:                 1 byte          0EEh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pops  the  size  of  bit slice, the source bit offset and 
     base address and destinator offset and base. Transfer bit 
     sequence  from  the  soucre bit address to the destinator 
     one.  NOTE!  If source and destinator areas are overlaied 
     then the instruction result may be unexpected. 
 
Interpreter: 
     sz:=Pop(); 
     i:=Pop(); adr:=Pop(); 
     j:=Pop(); adr1:=Pop(); 
     (* "transfer sz bits from bit address 
         adr*32+i to bit address adr*32+i" 
     *) 
 
 
SWAP 
SWAP 
 
Operation Code:                 1 byte          0F0h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Swaps two top words on the stack. 
 
Interpreter: 
     i:=Pop(); j:=Pop(); Push(i); Push(j) 
 
 
LPA 
Load Parameter Address 
 
Operation Code:                 1 byte          0F1h 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Substracts the next byte immediate operand and 1 from the 
     L_register and pushes the result into the stack. 
 
Interpreter: 
     Push(L-Next()-1); 
 
 
LPW 
Load Parameter Word 
 
Operation Code:                 1 byte          0F2h 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 71 (c) KRONOS
 

     Substracts the next byte immediate operand and 1 from the 
     L_register,  loads a word from the result memory location 
     and pushes it into the stack. 
 
Interpreter: 
     Push(Core[L-Next()-1]); 
 
SPW 
Store Parameter Word 
 
Operation Code:                 1 byte          0F3h 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Pops  a  value  from  the stack. Substracts the next byte 
     immediate  operand  and  1  from the L_register, stores a 
     value  at  the  result memory location and pushes it into 
     the stack. 
 
Interpreter: 
     Core[L-Next()-1]:=Pop(); 
 
 
SSWU 
Store Stack Word Undistractive 
 
Operation Code:                 1 byte          0F4h 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     The  same  as the instruction SSW but pushes popped value 
     backward into the stack. 
 
Interpreter: 
     i:=Pop(); Core[Pop()]:=i; Push(i) 
 
 
ACTIV 
ACTIVe process 
 
Operation Code:                 1 byte          0FAh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Pushes  address of the active process descriptor into the 
     stack. 
 
Interpreter: 
     Push(P) 
 
 
USR 
USeR defined functions 



ARCHITECTURE KRONOS INSTRUCTIONS
 

 

02-Dec-1988 72 (c) KRONOS
 

 
Operation Code:                 1 byte          0FBh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Instruction is reserved for the future extensions. 
 
Interpreter: 
     i:=Next(); (*  *) 
 
 
SYS 
SYStem rarely functions 
 
Operation Code:                 1 byte          0FCh 
Immediate Operands:             1 byte 
Instruction Length:             2 bytes 
Action: 
     Instruction is reserved for the future extensions. 
 
 
NII 
Never Implemented Instruction 
 
Operation Code:                 1 byte          0FDh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Raises the interrupt 07h. 
 
Interpreter: 
     TRAP(7h); 
 
 
INVLD 
INVaLiD command 
 
Operation Code:                 1 byte          0FFh 
Immediate Operands:               none 
Instruction Length:             1 byte 
Action: 
     Raises the interrupt 49h. 
 
Interpreter: 
     TRAP(49h) 



KRONOS IN PICTURES INTRODUCTION
 

 

02-Dec-1988 73 (c) KRONOS
 

 
          ILLUSTRATIONS FOR THE PROCESSORS ARCHITECTURE 
 
 
     Given  partition  may  be used as a manual for the KRONOS 
family  processors  architecture,  their  instruction  set and 
Modula-2 compiler code generation process. 
     The information will be present in the next form: 
 
   __________________________________________________________ 
Modula-2 source text	Generated code with comments
__________________________	_____________________________
 
 
     Note  that code will be given only for illustrative needs 
and  thereby  may differ from the code really generated by the 
current  version  of Modula-2 compiler. The reasons for it are 
follows: 
 
     1)  optimizations  which increase the code efficiency but 
harm the recognizing are not reflected in examples; 
     2)  some  examples  contain  the several variants of code 
generation  but  in  the compiler current version only the one 
version is of course implemented; 
     3)  the  dynamic  control instructions (for example range 
check instructions) are omitted. 
 
     The  M-code  instructions mnemonics are used in examples. 
The  insructions  formal  description  is  provided  by M-code 
interpreter. 



KRONOS IN PICTURES STATEMENTS
 

 

02-Dec-1988 74 (c) KRONOS
 

 
                          1. STATEMENTS 
 
     1.1. Assignment 
 
 MODULE M;    (* Global variables assigment *) 
 
 VAR  G: INTEGER; 
      B: BITSET; 
 
 BEGIN 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 | G:=1;                            LI1 SGW2             | 
 | G:=G+255;                        LGW2 LIB FF ADD SGW2 | 
 - - - - - - - - - - - - - - - - - - |- - -\-/- -|- -|- -- 
                                     |      |    |   | 
                                     G     255  '+'  G:= 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 | B:={0..31};                      LIW FFFFFFFF SGW3    | 
 - - - - - - - - - - - - - - - - - - - \-/- - - - -|- - -- 
 END M.                                 |          | 
                                      {0..31}       B:= 
 
     1.2. Access to global variables 
 
 MODULE M;      (* Greate number of global varialbes *) 
 
 VAR  G2,G3,G4, ... ,G255:INTEGER; 
      G256: INTEGER; 
 
 BEGIN 
 - - - - - - - - - - - - - - - - - - - - - - - 
 | G2  :=  G2;                 LGW02  SGW02  | 
 | G15 := G15;                 LGW0F  SGW0F  | 
 | G255:=G255;                 LGW FF SGW FF | (1.2.1) 
 | G256:=G256;                       ???     | (1.2.2) 
 - - - - - - - - - - - - - - - - - - - - - - - 
 END M. 
 
Note 1.2.1.  Access  to  the  first  14 global variables (with 
     numbers from 2 till 15) has a half-byte (hex) offset and 
     for  variables  with  numbers  from  16 till 255 has byte 
     offset. 
 
Note 1.2.2.  This is wonder, that a man can generate such much 
     number  of  global variables for single module, but if it 
     is so, we can generate: 
 
      LGA FF LSW1      LGA FF SSW1 
 
     or something else ... 



KRONOS IN PICTURES STATEMENTS
 

 

02-Dec-1988 75 (c) KRONOS
 

     1.3. Access to external variables 
 
     The  global  variables  of  another  modules  are  called 
"external variables". 
 
 DEFINITION MODULE M; 
   (* external module exported variable "i" *) 
   VAR i: INTEGER; 
 END M. 
                           number of module "M" in 
                           local DFT of module "N" 
 MODULE N;                           | 
                                     | the variable "i" 
 FROM M IMPORT i;                    | number in module "M" 
                                     |  | 
 BEGIN  (* read & write  external variable *) 
 - - - - - - - - - - - - - - - - - - |- |- - - - - - -- 
 | i:=i;                         LEW 01 02  SEW 01 02 | 
 - - - - - - - - - - - - - - - - - - - - - - - - - - -- 
 END N. 
 
     More  detail  information about local DFT may be obtained 
from procedure call's examples in Chapter 2. 
 
     1.4. IF-statement 
 
 MODULE M;  (* conditional statement *) 
 
 VAR bool : BOOLEAN;                 +--->      LGW2 
     G3,G4: INTEGER;                 | (1.4.1) JSFC 04  --+ 
                                     |                    | 
 BEGIN                               |                    | 
  - - - - - - - - - - - - - - - - - -          LI3 SGW3   | 
 |IF bool THEN G3:=3 ELSE G4:=4 END;                      | 
  - - - - - - - - - - - - - - - - - -  (1.4.2) JSF 02   --|--+ 
 END M.                              |      ______________|  | 
                                     |      |-->LI4 SGW4     | 
                                     |      _________________| 
                                     +--->  +--> 
 
Note 1.4.1.  If E-stack top contains 0 then PC increments 4 to 
     omit  THEN  clause  (0  is interpreted as FALSE any other 
     value not equal to zero as TRUE). 
 
Note 1.4.2. Unconditional jump to skip ELSE clause. 
 
 
     1.5. LOOP-statement 
 
     Code  generation  for LOOP-statement implemented with the 
help of jump instruction: 
 
 



KRONOS IN PICTURES STATEMENTS
 

 

02-Dec-1988 76 (c) KRONOS
 

MODULE M; 
 
BEGIN                           -->         - - - - - - - 
  - - - - - - - - - - - - - - --/         |--> JSF 02  --|--| 
  | LOOP   EXIT END;                                     |  | 
  - - - - - - - - - - - - - - --\              JSB 04  --   | 
END  M.                         -->        - - - - - - - - - 
                                          |--> 
 
     If   LOOP-statement   body   is   too  large,  then  jump 
instruction  operand  may  consists of two bytes. We hope that 
LOOP body less then 65K bytes code. 
 
     1.6. REPEAT-statement 
 
 MODULE M; 
 
   VAR G2:INTEGER; bool: BOOLEAN; 
 
 BEGIN 
  - - - - - - - - - - - - - - - - ->   _____________________ 
  | REPEAT G2:=1 UNTIL bool;           |--> LI1  SGW2      | 
  - - - - - - - - - - - - - - - - ->        LGW3 JSBC 05 --| 
 END M. 
 
     1.7. FOR-statement 
 
MODULE M; 
 
  VAR i,G3:INTEGER; 
 
BEGIN 
                              ____ 
                             /   LI0              low 
                            /    SGW2             =:i 
                           /     LIB     7F       high 
                          /      SGW4            temporary word 
                         /                       for high 
 - - - - - - - - - - - -         LGW2    <----    i 
  FOR i:=0 TO 127 BY 2 DO        SGW3         |   =:G3 
                                 LGW2         |   i 
    G3:=i                        LI2          |   step 
                                 ADD          |   + 
  END;                           COPT         | 
 - - - - - - - - - - - - -       SGW2         |   =:i 
                          \      LGW4         |   high 
                           \     GTR          |   > i ? 
                            \    JBSC    ----- 
                             ___ 
 
END M. 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 77 (c) KRONOS
 

 
                          2. PROCEDURES 
 
 
     2.1. Procedure declaration and it's call 
 
 MODULE M; 
 
 PROCEDURE P; (* procedure number will be 1 *) 
 
       - - - - - - - - - - - - - - - - - - 
 BEGIN | RETURN END P;              RTN  | 
       - - - - - - - - - - - - - - - - - - 
 
 BEGIN        (* procedure number will be 0 *) 
  - - - - - - - - - - - - - - - - - - - - 
  | P;                              CL1 | (2.1.1) 
  - - - - - - - - - - - - - - - - - -|- - 
 END M.                              | 
                        local procedure 1 call 
 
 
Note 2.1.1. CL1 marks P-stack as follows: 
 
               P-stack--> |          | 
                          |__________| 
      L in entry point--> |          | <-- S in invocation 
                          |    L     |       point 
      static          --> |__________| \ 
         and          --> |    L     |__\ registers values 
      dynamic             |__________|  / in invocation points 
       links              |    PC    | / 
                          |__________| 
                          |not change|<-- see instructions 
                          |__________|    SETM, RTN 
  new S in entry point--> |          | 
                          |          | 
 
 
     After  marking  new  L = old S and new S = old S + 4. The 
     offset  of  a  corresponding procedure PC is extracted by 
     indexing procedures table (see Note 2.1.2) with procedure 
     number.  RTN  takes from the P-stack procedure links area 
     values  for  PC and L in the invocation point and restore 
     them  in PC and L registers. The L content is assigned to 
     S register during the return. 
 
 
Note 2.1.2. Procedure table is the table which gives procedure 
     start  PC  offset  relatively module code frame base F by 
     the   procedure   number.  The  module  initial  part  is 
     considered as zero procedure (i.e. procedure whith number 
     0). 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 78 (c) KRONOS
 

 
     2.2. Access to procedure's local variables 
 
 MODULE M; 
 
 PROCEDURE P; (* procedure 1 *) 
 
                         procedure local variables quantity 
                                         | 
       - - - - - - - - - - - - - - - - - |- - - -- 
 VAR   |L4: INTEGER;                ENTR 01      | (2.2.1) 
 BEGIN |L4:=0; RETURN               LI0 SLW4 RTN | 
       - - - - - - - - - - - - - - - - - - |- - -- 
 END P;                                    | 
                             first 4 words (with numbers 0..3) 
                                 are occupied by links area 
 
 BEGIN        (* procedure 0 *) 
 - - - - - - - - - - - - - - - - - - - - - - 
 | P                                CL1    | 
 - - - - - - - - - - - - - - - - - - - - - - 
 END M. 
 
Note 2.2.1. ENTR 01 increments S-register by 1: 
 
        |___________| <-- L                 |__________| <-- L 
       0|           |          ENTR 01     0|          | 
       1| l i n k s |        ---------->   1|  links   | 
       2|           | <-- S                2|          | 
       3|___________|                      3|__________| 
        |           |                      4|__________| <-- S 
                                            |          | 
 
 
     After  all it is possible to operate with local variables 
     by  LLW,  SLW,  LGW  and  SGW  instructions, based on the 
     L-register. 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 79 (c) KRONOS
 

 
     2.3. Nested procedures 
 
 MODULE M; 
 
 PROCEDURE p1;  (* procedure 1*) 
   VAR p1L4:INTEGER; 
 
   PROCEDURE p2; (* procedure  2*) 
 
   VAR p2L4:INTEGER;            put embedding procedure p1 
                                L-register on A-stack 
   BEGIN                             | 
      - - - - - - - - - - - - - - - -|- - - - - - - --- 
      |p1L4:=12;                    GB1  LI12  SSW4   | 
      |p2L4:=11;                    LI11 SLW4  RTN    | 
      - - - - - - - - - - - - - - - - - - - - - - - - - 
   END p1; 
                         procedure number in procedure table 
 BEGIN                                         | 
   - - - - - - - - - - -- - - - - - - - - - - -|- - - 
   |p1L4:=2;                       LI2  SLW4   |     | 
   |p2;                            LLA 00  CI 02 RTN | (2.3.1) 
   - - - - - - - - - - -- - - - - - - -|- -|- - - - - 
 END p1;                               |   | 
                        L-register value   | 
                intermediate level procedure call instruction 
 
 BEGIN 
 - - - - - - - - - - - - - - - - - - - - - 
 |p1;                               CL1  | 
 - - - - - - - - - - - - - - - - - - - - - 
 END M. 
 
 
Note 2.3.1. CI takes from A-stack base register value, calling 
     procedure  and  memorizing  this  value  in  static chain 
     (instead   of   L-register   which  is  memorized  by  CL 
     instruction).  GB1  passes  procedure  static  chain on 1 
     level,  accepts  base  address of low (0) level procedure 
     static  chain from which procedure p1 is called, and puts 
     it  on  A-stack.  By  this  base  address  the access to 
     corresponding  procedure local variables is provided with 
     the  help  of  LSW  and SSW instructions. In this example 
     compiler  generated CI instead of CL because static chain 
     identical the dynamic one. 
 
 
     2.4. External procedure call 
 
 
 DEFINITION MODULE N; 
 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 80 (c) KRONOS
 

 PROCEDURE proc1; 
 
 END N. 
 
 
 MODULE M; 
 
 FROM N IMPORT proc1; 
 
 
                                    module number 
                                      | 
 PROCEDURE p1;                        | 
                                      | module's proc number 
 BEGIN                                |  | 
 - - - - - - - - - - - - - - - - - - -| -|- - - 
 |  proc1;                        CX 01 01 RTN |  (2.4.1) 
 - - - - - - - - - - - - - - - - - - - - - - - - 
 END p1; 
 
 END M. 
 
Note 2.4.1.  In  local  DFT  element with number 1 corresponds 
     module  N  and after loading reffers on DFT element which 
     points  on  module N G-area. The first area word contains 
     module  N  F-register,  thus  providing to reach its code 
     segment: 
 
 
                              D F T 
                           +-------+ 
                     +---->| N *- -|--+   -- DFT element for N 
                     |     |-------|  | 
                     |     |       |  | 
                     |     |_______|  | 
                     | +-->| M *- -|  |   -- DFT element for M 
                     | |   |_______|  | 
                     | |              | 
                     | |              | 
     module M image  | |              |   module N image 
      +---------+    | |              |    +---------+ 
      | 1 *- - -|- - + |              |    |         | 
      |_________|      |              |    |         | 
      | 0 *- - -|- - - +              | G  |         | 
 G -> |_________|                     +--> |_________| 
      | F *- - -|--> on code segment       | F *- - -|--> 
      |_________|                          |_________| 
      |   *- - -|--> on string pool        |   *- - -|--> 
      |_________|                          |_________| 
      |module M |                          |module N | 
      |G-area   |                          |G-area   | 
      |_________|                          |_________| 
 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 81 (c) KRONOS
 

 
     CX  puts  G-register in static chain links area and marks 
     (putting  flag  in  the  second local word) that call was 
     external.  RTN instruction analyses this bit and restores 
     G-register value if it's necessary. 
 
 
     2.5. Multivalues allocation 
 
 MODULE M; 
 
 PROCEDURE p; 
     - - - - - - - - - - - - - - - - - - - - - - - - - 
 VAR |i: INTEGER;                   ENTR 02           | 
     |A: ARRAY [0..15] OF INTEGER;  LIB 10 ALLOC SLW5 |(2.5.1) 
     - - - - - - - - - - - - - - - - - - - - - - - - - 
 BEGIN 
   - - - - - - - - - - - - - - - - - - - - - - - - - - 
   |i:=0;                       LI0  SLW4   |        | 
   |                                                 | 
   |                             A    i              | 
   |                             |    |              | 
   |A[i]:=1;                    LLW5 LLW4 LI1 SXW    | (2.5.2) 
   - - - - - - - - - - - - - - - - - - - - - - - - - - (2.5.3) 
END p; 
 
END M. 
 
 
Note 2.5.1.  ALLOC  takes  from  A-stack multivalue size, puts 
     back  S-register value and moves S on the given size thus 
     reserving  the  needful  number  of  words on P-stack for 
     multivalue.  After all array address is memorized in some 
     local word. 
 
Note 2.5.2.  Indexation  without  range  checking. If it's not 
     explicitly updated the range check is switched on. 
 
Note 2.5.3. During procedure return RTN instruction transposes 
      S in L thus frees all memory (in particular allocated by 
      ALLOC instruction on P-stack) for local objects. 
 
 
     2.6. Return from module initial part 
 
     In  this  Modula-2  programming  system implementation an 
initial  procedure  (module  body)  during  returning  puts on 
A-stack   memory   size  reserving  on  P-stack  after  module 
initialization,  i.e. <multivalues size in words> + 4 words of 
initial  procedure  links. This information is used by tasking 
initializer: 
 
 MODULE M; 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 82 (c) KRONOS
 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 |VAR A: ARRAY [0..0Fh] OF INTEGER;    LIB 010 ALLOC SGW2    | 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 BEGIN (* procedure 0 *) 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 |END M.                                LIB 14 RTN           | 
 - - - - - - - - - - - - - - - - - - - - - -|- - - - - - - - - 
                                            14h = 10h + 4h 
 
 
If module hasn't multivalues it must return 0: 
 
 МODULE M; 
 - - - - - - - - - - - - - - - - - - - - - - - - - 
 |BEGIN END M.                           LI0 RTN | 
 - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 
     2.7. Operation over pocedure values 
 
 
 MODULE M; 
 
 TYPE proc1=PROCEDURE (INTEGER); 
 
 PROCEDURE P(p1 : proc1); (* procedure # 1 *) 
 
 
                       to save A-stack on P-stack 
                          | load procedure value P1 
                          | from procedure P 4-th word 
 BEGIN                    |     |  put value on P-stack 
                          |     |     | from A-stack 
   - - - - - - - - - - - -|- - -|- - -|- - - - - - - - - - 
   |p1(1);              SLW4   LLW4  STOT  LI1  CF  RTN  | 
   - - - - - - - - - - - - - - - - - - - - -|- -|- - - - - 
 END P;                                     |   | 
                                       parameter| 
                                              formal procedure 
                                                     call 
 
 
 PROCEDURE p(w: INTEGER); (* procedure # 2 *) 
 BEGIN 
   - - - - - - - - - - - - - - - - - - - - - - - - 
   |                                SLW4     RTN | 
   - - - - - - - - - - - - - - - - - - - - - - - - 
 END p; 
 
 
 VAR v: proc1; 
  



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 83 (c) KRONOS
 

                             module number equals 0, 
                               as procedure is own 
                                         | 
                                         | procedure number 
 BEGIN                                   |  | 
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
   |v:=p;                            LPC 00 02  SGW2      | 
   |v(5);                            LGW2  STOT  LI5  CF  | 
   |P(v);                            LGW2  CL1            | 
   |P(p);                            LPC 00 02  CL1       | 
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END M. 
 
 
 
                           |<---     single word    --->| 
                           |____________________________| 
 Procedure value:          | 31..24 | 23 . . . . . . .0 | 
                           -----|-------------|---------- 
                                |             | 
                            procedure      module's DFT 
                              number       entry point 
 
 
     Procedure  links  during procedure call by CF instruction 
(similarly as CX): 
 
                      L'-->   |          | 
                              .          . 
                              |----------| 
                      S', L-->|G-register| 
                              |__________| 
                              |    L'    | 
                              .----------. 
                      S -->   .          . 
                              |          | 
 
 
 
     2.8. Parameter passing 
 
 
 MODULE M; 
 
 
 TYPE String=ARRAY [0..255] OF CHAR; 
 
 
 PROCEDURE P(i: INTEGER; S: String; VAR w: ARRAY OF CHAR); 
   VAR k,j:INTEGER; 
 BEGIN 
 
 (* parameter saving and variable allocation *) 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 84 (c) KRONOS
 

 - - - - - - - - - - - - - - - - - - - - - - - - - - 
 |                                STORE ENTR 01    |  (2.8.1) 
 - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 (* copying of array S called by value *) 
 
 - - - - - - - - - - - - - - - - - - - - - - - - - - 
 |k:=HIGH(S);                       LIB FF  SLW8   | 
 |j:=HIGH(w);                       LLW4 SLW9 RTN  |  (2.8.2) 
 |                                   |    |        | 
 |                                  HIGH  j        | 
 - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END P; 
 
 VAR 
     - - - - - - - - - - - - - -- - - - - - - -  - - 
     |str8:ARRAY[0..7] OF CHAR;  LI2 ALLOC SGW2    | 
     |str :String;               LIB 40 ALLOC SGW3 | 
     - - - - - - - - - - - - - -- - - - - - - - -  - 
 
BEGIN 
                     loading 'abc' constant address on A-stack 
                               | 
 - - - - - - - - -  - - - - - -|- - - - - - - - - - - 
 |p(1,'abc',str8);        LI1 LSTA 0001 LGW2 LI7 CL1 | 
 |                                                   | 
 |str:='def';             LGW3 LSTA *ind* LI1 MOVE   | (2.8.3) 
 |                                                   | 
 |p(2,str,str);           LI2 LGW3 LGW3 LIB FF CL1   | 
 - - - - - - - - -  - - - - - - - - - - - - - - - - - 
 
 END M. 
 
 
Note 2.8.1. STORE writes A-stack in P-stack, reserving storage 
     for local objects in P-stack: 4-th word contains HIGH(w), 
     5-th  word  contains  w  address,  6-th  word  contains S 
     address,  7-th  word  contains  i, 8-th word contains the 
     number  of  parameters.  ENTR  01  instruction terminates 
     storage allocation reserving 9-th word for j: 
 
 
 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 85 (c) KRONOS
 

  A-stack before    |__________|       L -----> |__________| 
  call of procedure |  HIGH(w) |                |__________| 
  p:                |----------|                |__________| 
                    |    w     |                |__________| |
                    |----------|                |__________| 
                    |    S     |          --> 4 | HIGH(w)  | 
                    |----------|          |     |----------| 
                    |    i     |          |   5 |    w     | 
                    |----------|          |     |----------| 
                                          |   6 |    S     | 
                                  STORE   |     |----------| 
                                          |   7 |    i     | 
                                          |     |----------| 
                                          |   8 |          | k 
                                          -->   |----------| 
                                  ENTR 1 ---> 9 |          | j 
                                                |__________| 
                                       S -----> |          | 
 
 
Note 2.8.2.  The instructions for array S copy which is called 
     by value are represented here. 
 
 
           I)  LIB 40        II)  LLW6           III)  LLW6 
               ALLOC              LIB FF               LIB 3F 
               COPT               CPCOP 06             PCOP 06 
               LLW6 
               LIB 40 
               MOVE 
               SLW6 
 
     The  necessity of introducing instructions CPCOP and PCOP 
     is  quite  clear. These instructions serve for allocation 
     and copy of multiparameters. 
 
Note 2.8.3.  LSTA  *ind*  by  relative  address in string pool 
     loads   on  A-stack  the  corresponding  string  constant 
     address.  Designated instruction sequence may be replaced 
     by:  LGW3  RDS  01 XYZ0, where X,Y,Z are codes of symbols 
     'x', 'y', 'z'. 
 
 
     2.9. Function call over nonempty stack 
 
 MODULE M; 
 
 PROCEDURE f(i,j: INTEGER): INTEGER; 
 BEGIN 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 | RETURN  i+j               STORE LLW5 LLW4 ADD RTN | 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END f; 



KRONOS IN PICTURES PROCEDURES
 

 

02-Dec-1988 86 (c) KRONOS
 

 
 PROCEDURE p(i,j: INTEGER); 
   VAR k:INTEGER; 
 BEGIN 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 | k:=i+j;                      STORE LLW5 LLW4 ADD SLW6 RTN | 
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END p; 
 VAR v: PROCEDURE(INTEGER,INTEGER): INTEGER; 
 BEGIN 
 - - - - - - - - - - - -- - - - - - - - - - - - - - - - 
 | p(1,f(2,3));   LI1     STORE LI2 LI3 CL1 LODFV CL2 | 
 | v:=f;          LPC 00 01 SGW2                      | 
 | p(1,v(2,3));   LI1 LGW2 STOFV LI2 LI3 CF LODFV CL2 |(2.9.1) 
 |                                                    | 
 - - - - - - - - - - - - - - - - - - - - -  - - - - - - 
 END M. 
 
Note 2.9.1.  Instructions  sequence  LI1  LI2 CL1 CL2 would be 
     wrong  because  CL1  takes  all  values from the stack in 
     entry  point  and 1 is among them but it's not destinated 
     for it. 



KRONOS IN PICTURES EXPRESSIONS
 

 

02-Dec-1988 87 (c) KRONOS
 

 
                          3. EXPRESSIONS 
 
 
     3.1. Word arrays indexation 
 
 
MODULE M; 
 
VAR x: ARRAY [0..3] OF INTEGER; 
    i: INTEGER; 
 
BEGIN 
- - - - - - - - - - - - - - - - - - - - - - 
|  x[i]:=1;    LGW2 LGW3 LI3 CHKZ LI1 SXW |-- with range 
|  i:=x[1];    LGW2 LI1  LXW SGW2         |   check 
- - - - - - - - - - - - - - - - - - - - - - 
 
- - - - - - - - - - - - - - - - - - - 
|  x[i]:=1;      LGW2 LGW3 LI1 SXW  | -- without range check 
|  i:=x[1];      LGW2 LI1  LXW SGW2 |    (3.1.1) 
- - - - - - - - - - - - - - - - - - - 
END M. 
 
 
Note 3.1.1.  Compiler uses here constant addressing generating 
     next code: 
 
           - - - - - - - - - - - - - - - - - - - - - 
           |    i:=x[1]        LGW2 LSW1     SGW2  | 
           - - - - - - - - - - - - - - - - - - - - - 
 
     and thereby range checking becomes unnecessary. 
 
 
     3.2. Byte arrays indexation 
 
 
 MODULE M; 
     - - - - - - - - - - - - - - - - - - - - - - - 
 VAR | A:ARRAY [0..0Fh] OF CHAR;  LI4 ALLOC SGW2-|--(3.2.1) 
     - - - - - - - - - - - - - - - - - - - - - - - 
       i:INTEGER;                                   (3.2.2) 
 
 
 BEGIN 
 - - - - - - - - - - - - - - - - - - - - - - - 
 |i:=0;                             LI0 SGW3 | 
 - - - - - - - - - - - - - - - - - - - - - - - 
 
 
 
 



KRONOS IN PICTURES EXPRESSIONS
 

 

02-Dec-1988 88 (c) KRONOS
 

 
                               HIGH    i   '>=' 
 - - - - - - - - - - - - ->      |     |     | 
 | WHILE HIGH(A)>=i DO       |->LI0F  LGW3  GEQ JSFC 014------ 
 | A[i]:='*';                |  LGW2 LGW3 LIB 2A SXB         | 
 | INC(i);                   |  LGA 03 INC1                  | 
 | A[i-1]:= A[i-1]; END;     |  LGW2 LGW3 LI1 SUB            | 
 - - - - - - - - - - - - ->  |  LGW2 LGW3 LI1 SUB            | 
 END M.                      |    |    |   |   |             | 
                             |    A[   i   1  '-'            | 
                             |   LXB  SXB JSB 019            | 
                              _______________/              | 
                                                             | 
                                         <-------------------- 
                                                     (3.2.3) 
 
Note 3.2.1. Second global word contains array address. 
 
Note 3.2.2. Char arrays are always packed. 
 
Note 3.2.3.  LXB  and  SXB are similar LXW and SXW but operate 
     over  byte. 0 <byte address> LXB and 0 <byte address> SXB 
     realize absolute byte addressing. 
 
 
     3.3. Byte arrays indexation with range check 
 
 
 MODULE M; 
 
 VAR A:ARRAY [0..0Fh] OF CHAR; 
     i:INTEGER; 
 
 
 
 BEGIN i:=0; 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  |WHILE  i#HIGH(A) DO -> LIW3 LI0F NEQ JSFC 0E             | 
  |  A[i]:=A[i+1];     -> LGW2 LGW3 LI0F CHKZ               | 
  |                       LGW2 LGW3 LI1 ADD LI0F            | 
  |                        |     |   |   |    |             | 
  |                        A     i   1  '+'  HIGH(A)        | 
  |                                                         | 
  |END (*WHILE *)         CHKZ LXB SXB JSB 013              | 
  |                        |                                | 
  |                       (3.3.1)                           | 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 
 
Note 3.3.1.  CHKZ  checks  whether  the A-stack second element 
     lies  between 0 and stack top (which defines a bound). If 
     it's  so  instruction  makes  bound  deletion  or  raises 
     TRAP(4Ah) otherwise. 



KRONOS IN PICTURES EXPRESSIONS
 

 

02-Dec-1988 89 (c) KRONOS
 

 
 
     3.4. Range check 
 
 MODULE M; 
 
 VAR x:[10h..20h]; 
 BEGIN 
    - - - - - -  - - - - - - - - - - - - - - - - - - - - - - - 
   |x:=13h;                    LIB 13 LIB 10 LIB 20 CHK SGW2 | 
   - - - - - - - - - - - - - - - - - - - - - - - - - | - - - - 
 END M.                                              | 
                                                  (3.4.1) 
 
Note 3.4.1.  CHK  makes range check. This check is made during 
     compilation  time  by compiler which generates code LIB13 
     SGW2. 
 
 
     3.5. Operatin over BITSET type object. 
 
 MODULE M; 
 VAR b1, b2:BITSET; 
 BEGIN 
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
   |b1:={}; b2:={1};                LI0  SGW2  LI2  SGW3 | 
   |b1:=b1+b2;                      LGW2  LGW3  OR  SGW3 | 
   (*     *                                     AND 
          /                                     XOR 
          -                                     BIC      *) 
 
   |b1:={1}; INCL(b1,2);            LGA 2  LI2  INCL     | 
   |         EXCL(b1.2);            LGA 2  LI2  EXCL     | 
  (* 2 IN b1                        LI2  LGW2   IN       *) 
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END M. 
 
 
     3.6. ANDJP and ORJP instructions 
 
 MODULE M; 
 . 
 . 
 BEGIN 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
  |IF FALSE AND TRUE THEN END;   LI0  ANDJP 1  LI1  JSFC  | 
  |IF TRUE OR FALSE  THEN END;   LI1  ORJP 1   LI0  JSFC  | 
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
 END M.                                                (3.6.1) 
 
Note 3.6.1.  After optimization compiler will generate nothing 
     instead of such funny code. 


	Contents
	Introduction
	Virtual Modula-2 machine
	M-code interpreter
	Instruction set manual
	Processors architecture illustrations
	1. Statements
	1.1. Assignment
	1.2. Access to global variables
	1.3. Access to external variables
	1.4. IF statement
	1.5. LOOP statement
	1.6. REPEAT statement
	1.7. FOR statement

	2. Procedures
	2.1. Procedure declaration and call
	2.2. Operation over procedure local data
	2.3. Nested procedures
	2.4. External procedure call
	2.5. Multivalues location
	2.6. Return from module initial part
	2.7. Operation over procedure values
	2.8. Parameter passing
	2.9. Function call over nonempty stack

	3. Expressions
	3.1. Word-arrays indexation
	3.2. Byte-arrays indexation
	3.3. Byte-arrays indexation with range check
	3.4. Range check
	3.5. Operation over BITSET type object
	3.6. ANDJP and ORJP instructions


